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CARLETON UNIVERSITY

Abstract

FINITE ELEMENT MODEL OF STRUCTURES
WITH PIEZOELECTRIC ELEMENTS

by Marcias Martinez

Chairperson of the Supervisory Committee: Dr. A. Artemev
Department of Mechanical and Aerospace Engineering

A Finite Element Method (FEM) Solver has been developed to analyze three-dimensional
structures with piezoelectric materials. Eight and twenty node brick elements, capable of
simulating linear elastic and linear piezoelectric structures, are derived. The constitutive
equations are presented in this thesis. A linear material matrix is derived from the
thermodynamic principles and evaluated for PZT-5A. Our model assumes static conditions
and the deformation of the structure occurs due to the effect that the electric field has over the
displacement field by means of the polarization of the material. This thesis concentrates on the
performance of actuated fiber composites (AFC). The FEM Solver also permits analysis of the
sensing mechanisms typically used in piezoelectric structures. The data obtained from the
model allow us to optimize the placement of piezoelectric patches on non-metallic matrices.
Strain, stress, electric and displacement field are presented and compared to analytical results
and experimental data. The use of this FEM solver allows for the understanding of the

behavior of piezoelectric materials and actuated fiber composites (AFC) and their applications.
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Chapter 1

LITERATURE REVIEW

1.0 Introduction

Intelligent material systems (IMS), also known as smart materials, have the unique properties
of being able to modify their behavior in response to a signal. As seen in Figure 1.0, it is the
combination of a controller, actuators, materials and sensors that create Intelligent Material
Structures. For example, in the semiconductor industry, smart materials are used as valves in
mass flow controllers. Many applications have been proposed for the use of smart materials,
for example the use of smart materials in the instrumentation industry in the form of pressure
transducers [1-4]. In the aerospace industry smart materials have been used for active damping
of vibrations in large flexible structures [5-9] and in the biomedical industry, ionic polymer
metal composites have been studied as possible materials for the development of artificial

muscles [10, 11]. Many other applications of smart materials are currently being studied.

Controller

Figure 1.0: Intelligent Material Systems [12]



Materials that are commonly used to create IMS are:

. Shape memory alloys (SMA),

. Electro- and Magneto rheological fluids,
. Tonic Polymer Gels,

° Magnetostrictive materials and

U Piezoelectric materials.

In the next few paragraphs we will briefly describe some of these materials.

SMA have been considered for the design of IMS. SMA are materials that have a strong
relationship between a temperature field and their deformation field. The shape memory effect
relates plastic strain with temperature. Ti-Ni alloy was first discovered in 1963 to have a shape
memory effect and super elasticity properties that other metal alloys did not have [13]. Since
1963, other materials with shape memory effects have been discovered, such as, certain copper
alloys (Cu-Zn-Al and Cu-Al-Ni), Nitinols (Ni-Ti) and certain ferrous alloys (Fe-Pt, Fe-Pd, Fe-
Ni-Co-Ti). SMA, have been investigated for space antenna applications, pipe coupling and
recently are being investigated to act as actuators and sensors. An example of shape memory
effect consists of a crumpled antenna in the form of a spherical ball that under the presence of
solar heat will restore its original shape of a satellite dish. The shape effect occurs due to a
martensitic phase transformation [13, 14]. Figure 1.1 describes the martensitic transformation
where the parent phase suffers a shear mechanism creating domains A and B at a critical
temperature. Domains A and B have the same crystallographic structure but different

orientation. As seen in Figure 1.1, this mechanism is a diffusionless phase transformation. At a

2



higher temperature than the critical temperature, if the crystallographic arrangement is
reversible (strain below a critical value), the martensite phase transformation becomes unstable
reverting back to the parent phase. This reversible arrangement is known as one-way shape

memory effect.

martensite

parent phase

martensite

parent phase

Figure 1.1: Shape Memory Effect [13]

Figure 1.2-a-c, shows one-way memory effect. In the one-way shape memory effect a spring, at
293K (figure 1.2-a-c), is applied small stress values (below the introduction of dislocations)

followed by a re-heating that will cause it to regain its original shape (figure 1.2-c).

SMA, are also capable of remembering the shape of the martensitic phase transformation
under certain conditions. When the applied strain is beyond a critical value (figure 1.2-d),
dislocations are introduced into the SMA. When the temperature is raised above the reversed
transformation temperature the shape memory alloy does not return to the original parent

phase (figure 1.2-¢). The induced dislocations are present in the parent phase even after the

3



reverse transformation heating. If the spring is cooled, the spring will stretch, as shown in
figure 1.2-f. If the material is reheated it will take the shape in figure 1.2-g. Now, every time the
spring is cooled and re-heated it will remember the shape shown in Fig. 1.2-f and g This

process is known as two-way shape memory effect.

a) W 203K

b) NNNNNANN 293K

C) M 373K

d) 203K
e) i 373K

f) NN 273K
g) i 373K

Figure 1.2: (a-c) One Way Shape Memory Effect, (d-g) Two Way Shape Memory Effect [13]

Shape memory alloys have proven to show large deformations and forces at low deformation
frequencies. Thus, when high deformation frequency application of smart structures is
required, SMA, are not necessarily the best choice. The complexity with high deformation

frequency applications is mostly due to the difficulty in rapid temperature control changes.

SMA, also have other very unique properties that are still not well understood, an example of

this is the rubber-like behavior of SMA. This behavior is described by Otsuka and Wayman

as:

“When the alloy is deformed just after the martensitic transformation, the deformation

behavior is plastic and it exhibits shape memory effect. However, when the alloy is aged in the



martensitic state for 12 hours or so, it becomes pseudoelastic. As far as the S-S curve is
concerned, it is very similar to superelasticity, but it is quite different from the latter in that it

occurs solely in the martensitic state.” [13, page 44]

Electro and Magneto rheological fluids are materials that are able to significantly change their
rheological behavior under the presence of an electrical or magnetic field. Rheology is the
study of deformation and flow of matter. These types of fluids have the capability of changing
from a free flowing liquid to a solid under the presence of an electrical or magnetic field.
Furthermore, the solids have controllable yield strength, dependent on the strength of the
magnetic or electrical field. A typical Magneto rheological fluid consists of a 20-40% by
volume of iron particles free floating in a liquid such as water, oil or glycol, as shown in figure
1.3-a. The particles are approximately 3-10 microns in diameter. Under a presence of a
magnetic field the particles are alignhed as shown in figure 1.3-b, thus creating a semi solid.

Magneto rheological fluids have been used in dampers [15].

Winslow initially observed electro rheological effects in 1947, for which sometimes this
change, from liquid to solid, is referred to as the Winslow effect [16]. Electro-rheological fluids
can change their rheological behavior by creating a series of dipoles that act like chain
structures along the direction of the electrical field. Electro and Magneto rheological fluids
have the ability to change phase state from liquid to solid and vice versa in a few milliseconds.
Electro and Magneto rheological fluids have potential to be a main contributor in the design of
IMS for a very large number of engineering applications. Magneto-rheological fluids have

many of the same types of rheological changes as Electro-rheological fluids, with the only



exception being that the changes in Magneto-rheological fluids are due to the application of a

magnetic field [16].
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Figure 1.3: (a) Magneto Rheological Fluids under no magnetic field, (b) under a magnetic
field.

Polymer gels have been considered as possible materials in smart material structures. Polymer
gels are defined as three-dimensional networks of cross-linked macromolecular
polyelectrolytes. These gels are capable of swelling or shrinking in aqueous solutions under the
presence of an alkali or acid solution, respectively [17, 18]. The swelling and shrinking of these
gels are due to changes in their environment, for example, a change in the pH of the solution
they are immersed in [17,18]. A change in temperature or electric field of the solution has also

been found to cause a swelling and/or shrinkage of these polymer gels [19].

Another type of material used in IMS are magnetostrictive materials. Magnetostrictive
materials are materials that produce small values of strain when subjected to a magnetic field.
Nickel, cobalt and iron are among some of the materials that exhibit magnetostrictive
behavior. The magnetostrictive effect in ferromagnetic materials is due primarily to two main
processes. The first process involves the displacement of magnetic domains, while the second
process involves the rotation of magnetization on the magnetic domains. The two processes

produce an overall deformation of the magnetostrictive material. Typical magnetostrictive
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materials produce displacements in the range of 100u. Recently, new materials have been
discovered to have magnetostrictive properties capable of producing displacements in the
range of 1000u. These new found materials are known as giant magnetostrictive materials.
Terfenol-D and Ni,MnGa are known as giant magnetostrictive materials. These materials
exhibit a large magnetostrictive strain under a magnetic field. This strain is induced by a
martensitic transformation, near room temperature, induced by crystallographic arrangements
as explained above for shape memory alloys. Due to this similarity between magnetostrictive
materials and shape memory alloys some magnetostrictive materials are called Magnetic Shape
Memory alloys or Ferromagnetic Shape Memory alloys [20-23]. Figure 1.4-a shows a
magnetostrictive material under a compression load. The magnetic domains, as seen in this
figure, orient themselves perpendicular to the applied compressive load. In figure 1.4-b, the
same material is placed under a magnetic field, which causes the magnetic domains to re-align
in the same direction as the magnetic field, causing an overall deformation of the

magnetostrictive material.
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Figure 1.4: (a) Magnetostrictive material under a compression load, (b) magnetostrictive
material under a magnetic field [24].



Piezoelectric materials are materials that have a link between an electrical field and the
deformation field. Two effects can provide such links: piezoelectric and electrostrictive.
Piezoelectric materials differ from electrostrictive materials, in that the relationship between
the deformation field and the electrical field is linear, while in electrostrictive materials the
relationship is quadratic. Piezoelectric materials also have the ability to produce an electrical
field when the piezoelectric materials are deformed. Piezoelectric phenomena are closely

related to ferroelectric behavior [12].

Piezoelectric effect depends on the lattice structure. It is considered that a crystallographic
structure is symmetric when an operation (for example rotation) can be performed on the
crystal structure, which does not change the physical parameter that is of interest (for example
polarity). Thirty-two microscopic symmetry types (point groups) can summarize the lattice
structure for thousands of crystals. The thirty-two crystal symmetries are outlined in Table 1.0.
Of these thirty-two crystal symmetries outlined in Table 1.0, eleven are considered to have a
center of symmetry. Crystals that have a center of symmetry do not have any polarization
(indicated by a dash in Table 1.0). The remaining crystal symmetry groups (twenty one) have
one or more unique directions. Two unique crystallographic directions cannot be made to
coincide by symmetry operations, such as rotation, reflection mirror, and inversion center
operations. A crystal structure that has only one unique direction axis, that does not have any
mirror perpendicular to this axis and for which the direction axis is different from each

opposite end, is said to be a polar crystal [25].

Polar crystals exhibit spontaneous polarization. These crystal symmetries total twenty, as

indicated in the remarks column of Table 1.0. As seen also in the remarks column of Table 1.0,
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certain crystals are ferroelectric crystals and have piezoelectric effects, while not all

piezoelectric crystals are ferroelectric. Piezoelectric effects are produced due to a charge

distribution at the nano-scale. Piezoelectric crystals have an overall charge distribution within

the crystal structure creating an electrical dipole. This dipole is produced by a pair of positive

and negative ions in the crystal structure with an electrical charge center. The movement of

this electrical charge center results in the polarization of the crystal.

Table 1.0: Symbols of the 32-point groups in crystallography [25]

Crystal Systems International Notation Schénflies Notation Remarks ¢
Triclinic 1 Cy * 4+
1 Ci(S2) -
Monoclinic 2 (@) * 4+
m(2) Cy(Crn) *+
2/m Con -
Orthorhombic 2mm Coy * 4+
222 Dy (V) *
mmm DZh(V h) -
Tetragonal 4 Cy * 4
4 Sy
42m DZd(V d)
422 Dy
4mm Ciy * 4
4/m Can _
4/mmm D -
Trigonal 3 Cs * +
3 C31(Se) -
3m Cay * 4
32 Ds *
3m Dsq -
Hexagonal 6 Cs *+
6 Csn *
6mm Cev *
6/m Cen
622 103
6m2 D
6/mmm Dgn
Cubic 23 T
43m Ty
m3 Th -
43 O -
m3m Ohn -

W The asterisk (*) indicate that piezoelectric effect may be exhibited while the plus sign (+) indicate that pyroelectric and ferroelectric effects

may be exhibited.




In most cases the alignment of dipoles are localized to certain regions of the material, as
shown in Figure 1.5, while in other regions the dipoles may be aligned in other directions. A
ferroelectric domain is a region of the material where all the dipoles are aligned in the same
direction. It has not been clearly determined what causes the formation of these regions but
two possible explanations exist. The first is that the domains form as to obtain a state of
minimum free energy. The second possible explanation is that the dipoles do not align, due to
material imperfections (defects). This second explanation is used in the case when there is no
depolarizing field. Depolarization of a piezoelectric material causes the material to have no
change in the dimension of the material under the influence of an electrical field.
Polarization can be calculated as follows:

P = (J-”,udv)/ volume 1)

where W is the dipole moment per unit volume [25].
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Figure 1.5: Ferroelectric regions. [25]
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The ferroelectric regions can be observed by the following methods: Polarizing microscope
[26,27], chemically etched samples observed by polarizing microscope, [28-30], X-rays [31],

power pattern method [33,34] and liquid crystal display [35, 36].

Piezoelectric ceramics are polycrystalline. The domain, indicated by the arrows in figure 1.6-a,
in a ceramic have no net polarization. When the ceramic material is placed under a strong
electric field, and usually at a temperature below the Curie temperature, the domains align in
the direction of the electric field. This alignment of the domains, in the direction of the electric
field, is known as poling (figure 1.6-b). The removal of the electric field produces a remanent
polarization in the piezoelectric materials close to the same direction as the applied electric
field as shown in figure 1.6-c. The poling of piezoelectric materials allows for a change in the
dimensions of the material under the influence of an electrical field. This change in dimension

is dependent on the poling direction and the strength of the electrical field.
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Figure 1.6: Poling of a piezoelectric material [37]
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Poled piezoelectric materials are anisotropic since their mechanical and electrical properties are
different along diverse directions. Prior to poling, poly-crystal piezoelectric materials are
1sotropic if they have a random orientation of grains. In poled piezoelectric materials, under a
“small” electric field, the change in dimension of the piezoelectric material is linear with
respect to the “small” electric field strength. As the field strength increases the change in
dimensions of the electric field become non-linear. The non-linearity is due to the non-linear

strain behavior of piezoelectric materials at high voltages.

Figure 1.7 shows the effect of the electric field over the material strain. At point (1) the
material is poled along the negative direction of the electric field while a positive electric field is
applied. The material will suffer shrinkage as the electric field is applied in the positive
direction. At point (2) the strain reaches a minimum, which is the point when the electric field
reaches coercive field strength. At the coercive field strength the polarization starts to change
direction and the material starts to expand up to a maximum point (3). Once the electric
field is removed the material remains polarized similar to the starting point but in opposite
direction (4).
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Figure 1.7: Strain vs. Electric Field for a piezoelectric material at the poled domain [38]
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Piezoelectric materials have generated many expectations among engineers and scientists who
are looking for ways of creating smart material structures. Researchers and engineers in recent
years have worked with piezoelectric materials in order to make piezoelectric materials act as

actuators, sensots or both.

As technology advances there is a need for more “biological-like” materials that are capable of
sensing and actuating. Piezoelectric materials can provide such functions, however, if
piezoelectric materials are to be more widely used in engineering applications, they will be
mostly in the form of composites. Bulk piezoelectric materials have several serious drawbacks
impeding their applications. It is the brittle nature of piezoelectric materials that limit their
widespread implementation. Most piezoelectric materials are ceramics. Ceramic materials have
an inherently low toughness that limits their use in any critical application. A number of brittle
materials have been used for structural applications in the form of fibers in fiber reinforced
composite materials. Such composites provide materials with high strength and high
toughness. Recently, several attempts were made to develop composite materials with
piezoelectric fibers [39-42]. Such active fiber composites (AFC) can be used as actuators

and/or sensors in a number of different applications.

A combination of piezoelectric materials in a composite allows for the composite to be
tougher, as well as flexible. A major advantage of a piezoelectric composite structure, over
non-piezoelectric composites, is the ability to actuate and sense under the influence of an

electrical or a deformation field respectively. As the material deforms the piezoelectric fibers
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inside the material produce an electric voltage potential that can be used as sensors, thus

serving as a component of an IMS.

The use of AFC for practical applications is still restricted by the lack of detailed knowledge
about the relationship between the structure, manufacturing process, and material
performance. Currently, for several AFC systems, the research is being conducted on the
relationships between structures, properties of constituent components, and the behavior of
the system as a whole [43]. One particularly challenging problem is the analysis of a long-term
behavior and degradation of AFC materials. The study of the effect of fiber damage on the

performance of AFC is an integral part of this research [39].

Composite materials (both conventional composites and AFC) provide an important
opportunity for the material design approach, in which material properties are optimized or
tailored to the requirements of the application through manufacturing. The tailoring of
materials allows for an optimum material design for the application that it is being designed
for. In order to use this approach, design tools are necessary to determine which structure is
optimal or to predict how differences in structure result in different properties. AFC materials
present a more challenging task for the development of such design models because their
behavior is affected by a usually non-uniform distribution of the electrical field. This problem
becomes especially challenging in the case of short fiber materials or materials with damaged

fibers.

In non-piezoelectric composite structures there has also been a need to analyze the

characteristics and properties of composite structures. Carbon and fiberglass materials have
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very little structural applications on their own, but when combined with a material matrix they
serve as structural members in the aerospace industry. The filler material used, the amount of
filler material, the shape and how it is organized within the material matrix, determines the
properties of the composite and its primary purpose such as weight reduction, strength and
cost among others. Figure 1.8 shows the different types of fiber reinforced composite

structures and sandwich composite structures.

High
i strength
s composite
o laminate

Woven fiber
Continuous fiher composites

compoistes

< farings

density -2
honeycomb
core

Sandwich Composite Structures

Chopped fiber .
composite composite

Figure 1.8: Composite Structures [44]

As shown in Figure 1.8, continuous fibers are widely used due to their strength capabilities,
although this type of composite has its weakness in the possibility of delaminating and its
inherently anisotropic characteristics. Figure 1.8 also shows composites made out of woven
fibers. These types of composites avoid the delaminating drawback of continuous fiber, but at
the expense of strength. Figure 1.8 shows chopped fiber composites. In chopped fiber
composites the fibers are randomly oriented within the material matrix. Chopped fiber

composites have the advantage of being less expensive to produce. These structures do not
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have the strength of continuous fiber composites. Another example of composite structures is
the hybrid composite, which consists of a combination of chopped and continuous fibers.
Hybrid composites can be manufactured with different layers, for example, fiber reinforced
and metal layers, or layers with different types of fibers. Finally a very common type of
composite in the aerospace industry is the sandwiched composite, which is a combination of a

low density honeycomb core, adhesive bond and a high strength composite laminate [44].

The finite element method (FEM) can provide an efficient computational tool for the
modeling and design of composite structures, as well as actuated fiber composites. This thesis
focuses on the development of finite element (FE) solver to analyze the electro-mechanical

behavior of systems with elastic and piezoelectric components such as AFC.

1.1 Material properties of Piezoelectric & Ferroelectric materials

Ferroelectric crystals are those that exhibit spontaneous polarization and in which polarization
can have a change in direction when influenced by an external electrical field. The properties
of all materials are determined by the crystallographic arrangement of atoms. The polarization
of the material is affected by internal and external factors. The existence or lack of structural
symmetry of the crystal is an internal factor that affects the polarization of the material.
External factors can also affect the polarization of the material, such as temperature. Some
ferroelectric crystals exhibit different microstructure arrangement at different temperatures for
which the crystal does not exhibit ferroelectric properties; this temperature is known as the

Curie temperature. It is important to note that the Curie temperature is the temperature at
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which a paraelectric-ferroelectric phase transition occurs. Many ferroelectric materials undergo
several phase transformations at different temperatures, which are known as phase transition
temperatures. Figure 1.9 shows the crystal structure of barium titanate. When the temperature
of the structure is raised to 120°C (Curie temperature) the unit cell structure of the barium
titanate becomes cubic. Below the Curie temperature the structure becomes slightly deformed
producing a dipole at the unit cell level. Materials that exhibit a polarization change, due to a

change in temperature, are known as pyroelectric materials [25].

2
O Ba+

Figure 1.9: Crystal Structure of barium titanate [25]

As it has already been stated, the direction of the polarization vector for many domains in the
crystal structure is influenced by the strength of the electric field and temperature. Hysteresis
in a piezoelectric material can be defined when the polarization (or strain) of a piezoelectric
material does not instantly follow, reacts slowly, or does not return completely to their original
polarization (or strain) state, to an applied electric field as shown in Figure 1.10. In other
words, if we plot strain or polarization vs. electric field from zero to a specific value of electric
field and then from the specific value back to zero volts, the strain or polarization curves will

follow different ascending and descending curves. Hysteresis loops are a consequence of the
17



inability of domain regions to re-align in the direction of the electric field or formation of

domain patterns providing minimum state of energy.

In 1930, Sawyer-Tower published a paper on how ferroelectric hystersis loops could be
observed by means of an electric circuit [25]. Sawyer-Tower demonstrated in his paper that by
monitoring the voltage with an oscilloscope the hysteresis loop could be determined. Figure

1.9 shows a typical hysteresis loop for a piezoelectric material.
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Figure 1.10: Polarization vs. Electric Field Hysteresis Loop [25]

As shown in Figure 1.10, when an applied electric field is small the polarization in the
piezoelectric material is almost linear (points 0—A). This linearity is also possible for any small
increment of the electric field were the curve could be approximated as a line. As the electric
field forces increase the polarization reaches a saturation point at C. A zero electric field force
shows some polarization, due to aligned domains, that remain aligned even after the electric
field has been removed (point D). The remaining polarization is indicated in Figure 1.10 by the

distance P,. If the electric field changes direction then the polarization past point D rapidly
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approaches zero at a value of the electric field known as the coercive field strength. If the
electric field increases in the negative direction then saturation of the polarization also occurs
at point G. If the electric field is increased in the positive direction then a negative value of
polarization will remain at an electric field value of zero. This remainder polarization is due to
the alignment of the domains even after the electric field has been removed. A final increase of
the electric field in the positive direction causes the dipoles to follow the direction of the

electric field until saturation occurs again at point C. Thus, the complete hysteresis curve is

represented by COFGHC.
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Figure 1.11: Strain vs. Electric Field in piezoelectric materials [38]

Figure 1.11 shows the electric field vs. strain for a piezoelectric crystal. When the maximum
electric field is small the curve produced is almost linear as in the case of type (a) curve shown
in Figure 1.11. As the maximum amplitude of electric field increases the hysteresis curves
becomes more pronounced as shown in curves (b,c,d). Once the amplitude of the electric field

increases beyond the coercive field the hysteresis curves transforms into a symmetric butterfly
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shape, due to a polarization re-orientation as shown in Figure 1.11 [38]. The non-linearity of
piezoelectric crystal make their application more difficult, on the other hand it is in the non-

linear region were the material achieves its largest deformation.
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Figure 1.12: Strain vs. E-field behaviors for various electromechanical ceramics [45]

Figure 1.12 shows the strain behavior of several types of piezoelectric materials as a function
of the electric field. As seen in Figure 1.12, it is noticeable that hard piezoelectrics have very
little hysteresis. The fact that hard piezoelectrics have little hysteresis comes at the expense
of low strain for hard piezoelectric crystals. It is believed that this low value of strain is due
to a breakdown in the dielectric strength and polarization saturation. In contrast, soft
piezoelectric show higher levels of strain and also very non-linear response between the
electric field and their strain. The high values of hysteresis are due to domain motion. This

high hysteresis results in poor accuracy of actuation control.

Shrout has shown larger strains on single crystal piezoelectric that are capable of producing

strains in the order of 1.2% [45]. The higher strains of single crystals piezoelectric are
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believed to occur due to a phase transformation as in the case of PZN-4.5%PT. This opens

a wider range of uses for these materials, for example, actuators.

1.2 Actuated Composites

In recent years piezoelectric materials have been manufactured as piezoelectric fibers and used
in the manufacturing of composite structures. Piezoelectric fibers embedded in an epoxy
matrix, allow for composite structures that are capable of actuating and sensing. These types of

composite structures are known as Actuated Fiber Composites (AFCs).

The simplest type of actuation scheme is to have a composite or a monolithic piezoelectric

material sandwiched in between two electrodes as shown in Figure 1.13.

Figure 1.13: Simple piezoelectric composite [38]
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As seen in Figure 1.13 when the electric field is orthogonal to the poling direction of the
piezoelectric material it causes a shear deformation of the material. The poling direction and
the electric field determine the actuation mode of the monolithic or composite piezoelectric
beam. Details on the different forms of actuation mode will be explained in Section 1.3 of this

chapter.

Recently, composite structures with more complicated actuation methods are being
manufactured and investigated. These more complicated composites use more complex
electrode patterns vs. two continuous electrodes. These electrode patterns are known as inter-
digitized electrodes (IDE) and allow for the poling of the fiber to occur in situ, as well as,
serving as the actuation electrodes of the AFC. The next few pages will describe the

manufacturing process used in order to create piezoelectric fibers used in AFC.

The fabrication of AFCs requires three primary components, as shown in Figure 1.14:

1. Piezoelectric fibers. These fibers can have different geometric cut sections and are
usually extruded. These cross sections can also be hollow, allowing for lower actuation
voltages [46]. In certain cases, such as in the case of materials developed by the NASA-
Langley Research Center, known as Macro-Fiber Composite Actuator (LaRC MFC)
the fibers are diced leaving a rectangular cross sectional fiber.

2. The matrix, usually an epoxy, acts as a means of holding the fibers together.

3. Polyimide film with imbedded electrodes.
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Figure 1.14: AFC Components [47].

In the case of the LaRc-MFC shown in Figure 1.14, the fibers are cut using a computer-
controlled dicing saw. The fibers are diced directly on a polymer film, thus allowing for ease of
handling. This allows for a low cost manufacturing process that is repeatable, accurate and

automated. Figure 1.15 shows the LaRc-MFC fiber sheet fabrication process.

a) 3.375 x 2.25 x 0.007 inch piezoceramic b) Computer-controlled dicing saw used for
wafer on polymer film. cutting wafers.

¢) Piezoceramic wafer and polymer film d) Sheet of piezoceramic fibers, after
frame positioning for cutting. cropping from excess polymer film.

Figure 1.15: MFC™ piezoelectric fiber sheet fabrication [47].
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The second component required, in an AFC, is a polyamide sheet with electrodes. The
polyamide serves as an insulator, which is necessary to create the electrical field that actuates

the piezoelectric fibers.

Figure 1.16 shows the actuated electrode pattern that is used in the aRc-MFC. The electrode

pattern is manufactured using photo-resist and etching processes.
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Figure 1.16: MFC™ Actuator electrode pattern (dimensions in inches) [47].

The final step consists of applying an epoxy adhesive and placing the piezoceramic
fiber/polymer film sheet, shown in Figure 1.17, on a polyamide electrode edged sheets, shown
in Figures 1.17-a, 1.17-b, 1.17-c and 1.17-d. Once the fibers have adhered correctly, the
polymer film carrier is removed leaving the piezoceramic fibers attached to the electrode edged
polyamide. A second layer of electrode edged polyamide film with epoxy sandwiches the fibers

in place. The complete assembly is then cured in a pressure-heated chamber.
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a) Preparation of bottom electrode film with b) Placement of fiber sheet on electrode
epoxy adhesive. film.

b |

1 2

|
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¢) Fiber sheet and electrode film after heat d) Removal of polymer carrier film from
tacking. transferred piczoceramic fibers.

Figure 1.17: LaRC MFC™ Fabrication [47]

The final product is shown in Figure 1.18.
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Figure 1.18: Completed Assembly of LaRC MFC [47].

Other approaches to actuation of AFC materials have been investigated. The cross sectional
geometry of the fiber is not required to be rectangular or fully filled. In the next few

paragraphs we will describe briefly manufacturing techniques for such piezoelectric fibers.
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1.2.1 AFC with composite fibers

The possibilities of composite fibers are also being investigated. Composite fibers consist of
hollow fibers with embedded internal electrodes on the inside and outside of the fiber. Under
these conditions the electric field that causes the deformation of the fiber goes through the
wall thickness of the fiber and not the complete fiber. This type of fiber is more difficult to
manufacturer than the LaRc-MFC but requires less voltage to actuate the AFC. The difficulties
on a hollow fiber composite arise from the manufacturing of a hollow fiber and the

implementation of an internal electrode inside the center of the fiber.

The first step in manufacturing hollow piezoelectric fibers is to create a mixture of
thermoplastic polymer and piezoelectric compound with equal viscosity to avoid cross
sectional deformation when mixing. Another mixture of carbon black powder and
thermoplastic polymers are combined. Both of these mixtures are past through a shear mixer.
The mixing occurs at high temperature (160°C) and at a speed of 30 RPM. The mixtures are
then pressed, machined and cooled into feed rods with the desired dimensions such as to have
the catbon/polymer feed rod inserted into the piezoelectric/polymer feed rod. This process is

summarized in Figure 1.19. [40]
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Figure 1.19 Manufacturing of Feed rods [46]

The second step in the fabrication of hollow piezoelectric fibers is the extrusion of the feed
rods. The extrusion is performed at approximately 1200Kg and permits a reduction in the
diameter of the fiber by a factor of 25, while at the same time maintaining the same aspect

ratio (fiber thickness to outside diameter) as the original extrusion as shown in Figure 1.20 [40].

00000
00000

IRebundiinE l
I

= ‘Green’

fibers

b) Step 2. Extrusion
Figure 1.20 Fiber Extrusions [46]

27



The third step is the sintering and burning process. The burnout process burns the black
carbon/thermoplastic core. The burnout process lasts approximately 18 hours at 600°C. The
sinteting process occurs at a heat rate of 180°C/hour until it reaches approximately 1285°C for
a period of 2 hours. This sintering process allows for the piezoelectric ceramic fiber to become
dense and strong. The burnout and the sintering occur by having the fibers vertically hanging
to avoid them from warping during manufacturing [46]. This process is graphically explained

in Figure 1.21.

Fibers

Burnout and
Sintering by
fiber hanging

Final fiber

¢) Step 3. Bumout/Sintering

Figure 1.21: Burnout and Sintering [46]

The incorporation of the electrodes is problematic since the intent of hollow fibers is to have
the electrode on the outer and inner surface of the hollow fiber. In order to overcome this
problem, the inner electrode is wrapped to the outside layer. This allows for many fibers to be

connected by means of a single power bar. Figure 1.22, outlines this concept.
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Figure 1.22: Electrodes on hollow fiber AFC [40]

1.3 Main types of Piezoelectric Actuators

Many applications for smart materials have been researched and developed. As with many
new material and technology initiatives, the initial applications are usually military. Smart
materials are no exception: Smart materials have been utilized and researched for active
structural control applications [47], rotor blade damping controllers, acro-elastic vibration and
surface control. Among many of the diverse applications being investigated, most of which are
still in the research and development stages [48]. Other non-military applications in
biomedical, telecommunication, actuators design are now also being researched. For example,
in the semiconductor industry the use of piezoelectric ceramics as valves on mass flow
controllers is frequently used. Also piezoelectric materials are commonly used in the design of
hydrophones, pressure transducers and force transducers. In the next few paragraphs an
emphasis on the different actuation mechanism using piezoelectric materials will be presented

and briefly discussed.
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The main purpose of any actuation mechanism is to achieve, high displacements, and high
force over a wide variety of frequency, while requiring small amounts of power. For some
applications piezoelectric material are able to achieve all these properties, such as in the case of

micro positioning [49].

Piezoelectric actuators can be divided into monolithic piezoceramic actuators, among which

we have:

® Stack Actuators,

® [aminar Actuators,

®  Shear Actuators and

® Bimorph Actuators

Other types of actuators that are not monolithic are:

® Building Block Actuators

® Jever Arm Actuators

¢ Hydraulic Amplification

® Flextensional Actuators

® TFrequency Leveraged Actuators and
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® Actuated Fiber Composites (AFCs)

In the next few pages we will describe the primary characteristics of some of these actuators.

1.3.1 Stack Actuators

The Stack actuator, as shown in Figure 1.23, consist of stacking piezoelectric disks or plates
interconnected by electrodes. The stack actuator design is common for position control
applications. The stroke (A), when no external force is applied, is a function of the number of
piezoelectric disks (n), the voltage (¢), the length of the stacked actuator (L) and the
piezoelectric constant (dj;). It is for this reason that this type of actuator is also known as the
d4; actuator design [38]. Stack actuators have demonstrated that they have the highest stiffness
and are able to sustain high-pressure loads [50]. The actuation performance of a piezoelectric
actuator is a function of the material properties of the actuator (piezoelectric constants). Table

1.1 outlines the piezoelectric properties for PZT-5A.

stacked design (dsz coupling)
/-—“'_“‘-.
iL' e ] 4 A
A 2
F 3
—
“54' 4|
h J
1> poling

A=dsgang¢l

Figure 1.23: Stack Actuator [38]
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Table 1.1: Piezoelectric Constants for PZT-5A

Constant Value (10> C/N)
d,, A7
dss 374
dyy, dis 584

1.3.2 Laminar Actuatot

Laminar Actuators are very similar in nature to piezoelectric stack actuators in that the electric
field and the polarization direction of the material are in the same direction. In a laminar
actuators the poling of the material and electric field are in the same direction. These types of
actuators are also used for micro-positioning control. The laminar actuator stroke (A) is also a
function of the width of the piezoelectric plate (h), the voltage (¢), and the material property

(dsy). The laminar actuator is shown in Figure 1.24.

laminar design ({da1 coupling)

Figure 1.24: Laminar Actuation [38§]
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1.3.3 Shear Actuator

The shear actuation makes use of the piezoelectric constants d,;, and d,, as their primary
deformation mode. The shear actuator, as stated by its name, shears the piezoelectric material.

In this type of actuator the poling direction of the material and the electric field are orthogonal

to each other. Figure 1.25 shows a shear actuator.
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Figure 1.25: Shear Actuation [38]

1.3.4 Bimorph Actuator

Bimorphic actuators have been used in a variety of applications such as in robotics, spoilers
and vibration of helicopter rotor blades. Most of these applications require large
displacements. The bimorph actuator operates in the extension of the upper piezoelectric
layer while contracting the lower piezoelectric layer. This extension and contraction is achieved
by attaching two layers of piezoelectric that are poled in opposite directions, such that when
under the presence of the same electric field it causes one layer to contract while the second

layer expands, thus creating a bending deformation.
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Figure 1.26: Bimorph Actuation [38§]

The primary actuation mode of the bimorph actuator is that of dj;, as seen in the analytical

equation presented in Figure 1.26.

The above actuators are of the simplest kind of actuating mechanisms and are of great
importance because of simplicity. Simple analytical equations, as described in the figure, permit
for quick estimates for deformation of these types of actuators. Recently, combinations of
different types of actuators have been described in different journals. The following few
paragraphs describe some more advanced actuating mechanisms. These types of actuators we

will describe as non-monolithic.

1.3.5 Building Block Actuators

The concept of building block actuators is based on assembling a series of smaller actuators so
to produce an actuator with better performance capabilities than the original building block.
The C-block actuators, shown in figure 1.27, permit an increase in performance of
approximately eight percent more work than an equivalent straight bender actuator [49]. Other
types of building block actuators have also been studied, such as recursive actuators and

telescopic actuators. Both of which are considered a building block actuator.
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Figure 1.27: Building Block Actuation [49]

1.3.6 Lever Arm Actuators

Another possible way of increasing the performance of an actuator is to combine the
piezoelectric actuator with mechanical devices, such as lever arms. This type of combination
increases the output displacement but in the process the force produced by the actuator is
reduced. Under this type of design the “moment rules” play an important role in order to
determine the desired distance, the required force and the location of the pivoting point with

respect to load location.

Figure 1.28 shows a lever arm actuator. The lever arm actuator makes use of the stacked
piezoelectric actuator. The stacked actuator when excited causes the rotation of the

mechanism [49].
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Figure 1.28: Stacked Linear Arm [51]

1.3.7 Hydraulic Amplification Actuator

The use of fluids as an intermediate medium to transfer force is an effective means of
amplifying the transmission ratio up to 100 times. Figure 1.29 shows a typical schematic of a

hydraulic amplification actuator. [49]

Input Piston

Output Piston

Piezostack

\_ Oil Chamber

Figure 1.29: Hydraulic Amplification Actuator [49]
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1.3.8 Flextensional Actuators

The flextensional actuator, shown in Figure 1.30, is also known as the Cymbal actuator. It
consists of a piezoelectric stack that is attached at both ends to a cavity. As the piezoelectric
actuator contracts or expands it causes the cavity to displace in a transverse direction. This
type of actuator has a primary advantage, which is the capacity to increase the deflection and

the force output.

Displacement Output

Brass Endcap

Brass Endcap

PZT Stack

Figure 1.30: Flextentional Actuator [49]

1.3.9 Frequency Leveraged Actuators

The last type of actuator that will be described is the frequency-leveraged actuator. The
primary advantage of this type of actuator is that it has infinite stroke capabilities at the
expense of speed. This type of actuator consists of three piezoelectric actuators, the trailing,
the leading and the extending. The trailing and the leading release and grab the rod depicted on

Figure 1.31, while the extending and contracting arm extends and contracts in order to move
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the rod. This allows for this actuator to have infinite stroke as long as it can grab and release

the rod.
Direction of motion
N
- Extending Leading
Trailing actuator actuator
actuator
Figure 1.31: Frequency Inchworm Actuator [49]

1.4 Summary

Chapter one of this thesis has presented a brief introduction on the importance of
piezoelectric materials and how they could potentially play a major role in society as these are
imbedded into composite materials. A definition of IMS is presented and described. The
chapter presents a literature review focusing on ferroelectric material properties, followed by
the use of piezoelectric fibers in AFCs. The manufacturing of AFCs with diverse fibers is
considered and described. Finally most typical actuators found in literature are presented. The
final goal of this thesis is to be able to simulate the behavior of piezoelectric materials using

finite element methods. The main objective of this thesis is the development of a
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computational tool that will allow us to simulate the behavior of elastic and piezoelectric
structures. The need for a design tool arises from the necessity to simulate new material
behavior and eventually the application of these new materials in large structural systems. The

thesis is divided into six chapters.

Chapter two is followed with a detail derivation of the mechanical, electrical and coupled

equations required to model piezoelectric structures mathematically.

Chapter three will focus on the implementation of the constituent mathematical equations into

Finite Element Methods form (FEM).

Chapter four will concentrate on validating the elastic, piezoelectric elements and solver. The

results obtained are compared to available analytical solutions.

Chapter five focuses on the use of the solver to analyze the behavior of Actuated Fiber
Composites (AFC). The results are compared to experimental work performed by EMPA,
Swiss Federal Laboratories for Material Testing and Research in Switzerland. Other problems
using AFC are presented and analyzed, whenever possible the results are compared to

analytical and experimental results.

Chapter 6 is the conclusion chapter of the thesis and briefly summarizes the results presented

in all the chapters.
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Chapter 2

ELECTRO MECHANICAL EQUATIONS

2.0 Introduction

A derivation of the electro-mechanical constitutive relationships is presented based on
thermodynamic principles [1]. A derivation of the electro-mechanical stiffness matrix is
presented from the weak formulation of the mechanical equilibrium equation, electrical

equilibrium equation and the electro-mechanical constitutive equation [2-4].

2.1 Thermodynamics and constitutive relationships of piezoelectric materials

The constitutive equations of piezoelectric systems can be derived from the thermodynamic
principles. G is the Gibbs free energy of the system as described in equation 2.1. The Gibbs

free energy is a function of U, the internal energy of the system, e the strain tensor of the

system, D the electric displacement vector, B the magnetic induction vector and M the entropy

of the system. Temperature (®), stress (o), electric field (E), and magnetic field (H) are also
parameters that determine the behavior of a piezoelectric crystal. The Gibbs free energy of this
system can be defined by taking into account the different energy contributions as shown in

equation 2.1:
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G=U-¢,0,-D,E,~B,H,-n® 2.1)

In order to simplify the problem we will assume that the Gibbs free energy of the system is
only a function of the stress, electric field and temperature and that they are independent

variables as shown by equation 2.2.
G=6G(o,,E,,0) (2.2)

It is important to note the switch from tensor to engineering notation from this point on in
the thesis. The engineering notation that we use defines the strain and stress parameters, in
vector form, in the following order 11, 22, 33, 12, 23, and 31. For example the stress vector,

o, would contain the stress components in the following order o, o, , o,

XX yy?

Oy Oy Oy

22> TXy> Tyzd

By taking the partial derivative of Gibbs free energy with respect to stress, and similarly with

respect to the electric field and to temperature we obtain:

2.3)

where,

® ¢ is the strain of the system, D, is the electrical displacement of the system in x, y and

z, and 1 is the entropy of the system.
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® The supersctipts E, o and ® indicate that the electric field, stress and temperature ate

kept constant.

The differentials of strain, displacement and entropy (equation 2.3) can be presented as:

ap \° ap \7° ap 7"
dD, = ~| do, + - dEn+( '”j do®
3| 3| o+ (3] ar o oy

Expanding equation 2.4 we obtain the piezoelectric equations as shown in equation 2.5. It is
important to note that the elimination of the differential operator from equation 2.4 to
equation 2.5 is due to the fact that ¢, is equal to de; since the choice of reference state is

arbitrary.

e =0 +eP0,+ -+l P00, +dE, +d2E, +d3E,d®  (i=12..6)
D, = d::),lgl +dri),2o-2 teeet dr?,égﬁ + K-z(r?,lEl + K-ri),ZEZ teeet KI(B,3E3 +p,d® (2.5)

dQ=G)dr]=®(ozlE0'1 +ato, +~~-+a650'6)+®(p1"E1 +pJE, +---+p;’E6)+pcfd®

The supersctipts of E, o and O indicate that the electric field, stress and temperatute are kept

constant. The specific heat value, c,, is used in this equation with a constant electric field and

pressure.
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From equations 2.4 and 2.5 the following coefficients can be defined:

® FElastic compliance coefficient C;; :

S g
C,==—
log
e Permittivities Km:
- _dD,
" OE,
® Piczoelectric constant d:nj :
- _dD, O¢,
" 90, OE,
® DPyroelectric coefficients p_m:
- _ aD m __ aﬂ
Pn="50 ~oE,
® Thermal Expansion coefficient O ...
_9¢ _ 91

ai?thermal - a® - ao_i
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® Specific heat c:

cC =

n . }
» 6%, where p is the density.

The last equation in equation 2.5 represents the energy transfer by means of a heat exchange.
If this energy transfer results to be zero, in other words dQ=0 then we obtain the adiabatic
piezoelectric equations. For example if the piezoelectric material was used in a piezoelectric
vibrator with a frequency of vibration of more than 10" Hz, then the system has no time to
exchange heat with the surrounding environment, thus considering that the system is adiabatic.

Under these circumstances, equation 2.5 remains the same and the superscript E, © and o are

replaced by M to indicate an adiabatic condition.

Equation 2.4 and 2.5 present the constitutive equations in the strain-charge form. The electro-
mechanical constitutive equations can be presented in a total of four forms. It is important to
note that the thermal effects are being neglected. In this thesis the stress charge form of

equations will be used.

® Strain charge form

T

E= é o+ c_l E 2.6)
D=do+xE
® Stress charge form
o=C...—eFE
St @.7)
D=e¢'e+«kE

where,
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o Kis the permittivity constant matrix in the stress charge form.
o eis the piezoelectric constant matrix in the stress charge form.

o C

siir 18 the elastic stiffness matrix in the stress chatge form.

o T is the transpose operator.
® Strain voltage form

e=C,o0+g'D
28)
E=-go+x D
Where,
o C,is a compliance coefficient matrix for the strain voltage form of the
constitutive equations.
o gis the piezoelectric coupling coefficient for the strain voltage form of the
constitutive equations.

e Stress voltage form

oc=C,e—q'D
P q_l (2.9)
E=—qge+x, D

Where:
o C, is the stiffness matrix in the stress voltage form of the constitutive
equation.
o K electric permittivity matrix for the stress voltage form of the constitutive
equation.
o qis the piezoelectric coupling coefficients for the stress voltage form of the

constitutive equations.
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The following paragraphs show how to transform the electro-mechanical equations from
strain charge form to stress charge form. We start with the equation for strain in the strain

charge form (equation 2.10):

T

e=Co+d E 2.10)
where,
® ¢ s strain

® . is the stress field

® (s the compliance material matrix

® T is the electric field

® dis the piezoelectric material constant matrix.

Solving for stress we obtain:

-1 -1 _T

6=C ¢-C d E 2.11)

Re-naming some of the components in equation 2.11 we obtain that:

T
e=C d
. (2.12)
C.s =C
Thus,
0=C ek (2.13)
The equation for electrical displacement in strain charge form is:
D=do+kE 2.14)
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Where,

® K is the electric permittivity in the strain charge form.

Substituting o into the above equation we obtain:

- _T -
D=d(C,e-C,;d E)+KE
Simplifying:
- _T -

D=dC;e-(dC,;d E-KE

Thus,
¢’ =dC siff
and
_ _ _T
k=k—dC,d

Where,

® K is the electric permittivity in the stress charge form.

Thus, the final electromechanical equations in stress charge form are:

0=CE—€k

D=e¢"e+kE

Equation 2.19 in matrix form is shown in equation 2.20:

s
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2.16)

2.17)

2.18)

2.19)

(2.20)



The constitutive equation in stress charge form presented in equations 2.19 and 2.20 are used
in our piezoelectric solver. The solver would solve for displacement and electric potential,
which can then be used to compute the strain and the electric field [5,6]. Once the
displacement and electric potential are obtained, the strain and the electric field can be

computed which in turn allows the stress to be calculated.

The constitutive matrix for materials with orthotropic elasticity has the following form:

M, M, M, 0 0 0

M, M, M, 0 0 0

M M M 0 0 0

Cmﬂ _ 31 kY 3 221)
0 0 0 M, 0 0
0 0 0 0 M, 0
0 0 0 0 M
For isotropic materials:
YM.-(1-v)

d+v)-a+2v)

_ YM..v
2T 14v)-1+2v)

M,=M;=M, =M, =M, =M

YM.
2(1+v)

My=M,=M,=
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Where, Y.M. is the Young’s Modulus of Elasticity. Figure 2.0 shows the elastic compliance and
stiffness matrix based on the crystal symmetry. Figure 2.0 also shows the triclinic crystal
structure as the most general compliance/stiffness matrix that one could simulate. However, in

this thesis the focus has been placed on piezoelectric material, such as PZT-5A, that is based

on a tetragonal class 4mm.

TETRAGONAL

Form of the (s;;) and (c;;) matrices Classes 4, 4, 4/m Classes ¢mm, 42m,t 422, 4[mmm

. ° . . ° -
KEY TO NOTATION
e N1 N
®  non-zero component
®—e equal components * - - e - - -
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Figure 2.0: Compliance and Elastic matrix based on the crystal symmetry [1].
The piezoelectric constant matrix is defined by matrix e. The piezoelectric constant matrix is

the mapping transformation matrix that maps electric field, E, to stress, 6. The transpose of

the piezoelectric constant matrix determines the corresponding mapping transformation of
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strain, ¢, to dielectric displacement, D. Equation 2.22, show the piezoelectric constant matrix

for an orthorhombic crystal structure.

0 0 e
0 0 e,
e= 8 6(2)4 6(3)3 (2.22)
es 0 O
0 0 0

The locations of the piezoelectric constants in ¢ are dependent on the symmetry of the crystal
structure as described in [1]. PZT single crystals with piezoelectric properties can have either
tetragonal (4mm) symmetry or rhombohedral (3m). The ceramics studied in this thesis have
tetragonal symmetry of properties in poled state. Figures 2.1 shows the different forms that
the piezoelectric constant matrix takes depending on the symmetry and the crystal structure.
The crystal structure with the most general form of piezoelectric constant matrix is the triclinic

crystal arrangement [1].

Form of the (¢ matrix TETRAGONAL

e s

. TRIGONAL
'%:} ’ TN

1o s ORTHORHOMBIC

e,

., TETRAGONAL .,

CR), (X

Figure 2.1: Piezoelectric Material Matrix [1]
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The permittivity matrix for a tetragonal system is defined in equation 2.23. The permittivity

matrix maps the electric field to the electric displacement D [5,0]:

k, 0 O
k=0 kx, O (2.23)
0 0 «xy

Where, K, K,, and K;; are the permittivity constants. The general forms for the permittivity

constant matrix based on the crystal structure can be found in [1].

The complete piezoelectric material matrix (D) assuming no thermal effect is defined as [5,6]:

M1l M12 MI3 0 0 0 0 0 31
M21 M22 M23 0 0 0O 0 0 32
M31 M32 M33 0 0 0 0 0 ¢33
0 0 0 M4 0 0 0 e24 0
D={ 0 0 0 0 M5 0 e5 0 0 (2.24)
o 0 0 0 0 M6 0 0 O
0 0 0 0 e5 0 «x1 0 0
0 0 0 €4 0 0 0 x2 0
31 €32 33 0 0 0 0 0 x33

where,

e M1l =M22 M12 = M23 = M31 = M32 and M44=M55

o 31 =¢e32and el5 = e24
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o 11 =x22.

Figure 2.2 shows the different forms that the material stiffness matrix takes for tetragonal

systems including the thermal effects [1].
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Figure 2.2: Material Stiffness Matrix for tetragonal systems [1]
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2.2 Weak Formulation of the Electro-Mechanical Equations

This section presents the derivation of the weak formulation for the mechanical and electrical
equilibrium equations. These equations are then combined with the linear electro-mechanical
constitutive equations for piezoelectric structures in order to derive the complete set of

equations required for modeling piezoelectric structures.

2.2.1 Mechanical Equilibrium equation

The conservation of momentum equation is presented in equation 2.25 as:

d’u

V1-0'+p=p?

(2.25)

where,

®p is the density
. uT=[u1 U, u3] is the transposed (T) displacement vector

edu’/dt’ is the acceleration of the system

. p=[p1 D, p3] is the body force

ec'=(0,, 0, 0, 0, 0, 0,)Iisthestress state and

oV ¢ is the symmetric divergence operator.

d/ox, 0 0 dfox, O Jfox,
V,-= 0 9dfox, 0 d/dx, dfox, O (2.26)
0 0 9J/dx, O d/ox, 9/dx,
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In our case the system is considered to be in static equilibrium, ie., inertial forces are
neglected. Thus, the mechanical equilibrium equation can be simplified to:

V, . c+p=0 2.27)

2.2.2 Electric equilibrium equation

The electric equilibrium equation is defined by equation 2.26:

VD=0 (2.28)
where,
eV=[0/ox, 9/dx, 9/dx,]| isthe gradient operator and

®D is the electrical displacement.

2.2.3 Electromechanical Constitutive Equation

The linear coupled electro-mechanical constitutive equation is presented in equation 2.29. The
mechanical equilibrium equation (2.27) and the electrical equilibrium equation (2.28) are
coupled in the electromechanical constitutive equation 2.29:

o=Ce—eFE

2.29
D=e¢"e+«kE 2.29)

Where,
o, 1s stiffness material matrix (6 by 0)

®c is the piezoelectric constants matrix (6 by 3)
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oc' = [, €, &, 2€, 2€,, 2€,], the strain matrix
®K is the permittivity matrix (3 by 3) and

oL is the electric field vector, E' = [E, E, EJ].

2.2.4 Weak formulation of the elastic mechanical equilibrium equation

Applying the weak formulation to the mechanical equilibrium equation we obtain:

x=[8d" (V, 0+ p)av =0
|4

where,
edu’ is the virtual displacement

oV represents the volume of the continuum.

First we need to recall the divergence theorem which states [7,8]:

[(v-h)av = [(n-n)ar

Vv

We define,

h=fVg

(2.30)

2.31)

(2.32)

where, f and g are scalars and I represents an integral through the surface of the continuum.

By means of the divergence theorem we can obtain Green’s 1% identity, which states:

[(rv2g)av = £(n-vg)ar-[(vVf-Vg)av

14

(2.33)

Allowing Vg to be 6 and “f” to be du" and applying Green’s first identity to the mechanical

continuum equation section we obtain:

61



[l (v, 0)av = [ (n-o)ar - [(V6w) - o)av 2.34)

\4 r \4

Thus, the weak formulation for the mechanical equation is:

2=[ 8" (o)l + [ & (p)av - [(VIan" o)V =0 (2.35)

In the next section we proceed to determine the weak formulation for the electrical

equilibrium equation.

2.2.5 Weak formulation of the electrical equilibrium equation

We have applied Green’s identity to the continuum equation, and now we proceed to apply the

same steps to the equation below (Electrical Equilibrium equation):

2,=| 89" (VD)av =0 (2.36)

where,
® 3¢ is the virtual potential

® D is the electric displacement.

Applying the Green’s identity to the electric equilibrium equation we obtain:

2,=] 8p(VD)av =0 2.37)
v
By means of the divergence theorem we obtain Green’s first identity, which states:

[(rv2g)av = £(n-vg)ar - [(vVf-Vg)av (238)

14
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Allowing Vg to be D and “f” to be 8¢ and applying Green’s first identity to the mechanical

continuum equation section we obtain:

[8p(VD)av = [ 8p(n- D)ar - [ (VSp)" - Dav (2.39)

v r
From the constutive equations the electric field and the dielectric displacement are related by
the permitivity equation.

D=kE (2.40)
This definition of dielectric displacement is then inserted into equation 2.41, later in the
derivation. For now we will stop at the weak formulation of the electric equilibrium equation

as defined by equation 2.41.

[80(VD)av = [Sp(n- D) - [ (VSp)" - DdV 2.41)
Thus,
%> = [ 8pln- D)T - [ (VSp)" - DdV (2.42)

2.3 Total Weak formulation

The combined weak formulation to our problem is defined by equation 2.43 [7,8]:
o =20+ 2,=0 (2.43)
Thus, substituting equations (2.35) and (2.42) we obtain:
X = [0 (- 0)aT+ [ 8" (p)av - [ (V80" o)V + [ Sp(n- D)aT - [ (VSp)" -Dav =0  (244)
r v v r v
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By substituting the Electro-mechanical constitutive equations in stress-charge form

o=Ce—eE 545
D=e"e+KE @H)
we obtain:
Ziwa = [0 (n-(Ce = eE))dT+ [ 84" (p)av = [(V]d0) - (Ce - eE))av +
r v v
(2.40)
[opln-(e"e+ kBT~ [ (Vo) - (¢" e+ KE)AV =0
r v
The next step is to expand all integrals:
Xrwa = 8" (1 (Ce—eE)dT + [ 8" (p)aV - [ (V] 80" Celav + [ (V] ) eEav
T v v v 2.47)
+j5¢(n e e)dr + [ 8p(n- kEYIT = [ (Vo) - (e"€)aV ~ [ (VSp)" - KEAV =0
r r 14 14
On the surface of the system:
=n-0 (2.49)
where
® 7 is the traction force
® n is the normal vector that maps stress to traction.
Substituting 7 we get:
T = [0 (@)dT+ [ & (p)av - [ (V] &) Ce)av + [ (V] Gu)" eEdv
T v v v (2.49)
[pln-e” eldr+ [ Sp(n- kEYIT - [ (Vo) (e €)aV - [ (Vop)" - xEaV =0
r r Vv 1
The strain displacement relationship is:
€=V,cu=D,*u (2.50)

where

® u is displacement.
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The electric field is expressed as follows:
E=—V@=-D,¢ (2.51)
Thus substituting equation 2.50 and 2.51 into the weak formulation we obtain:

X = [ 8" ()0 + [ 8" (p)av - [ (V] )" CD,u Jav + [ (V] &0)" e(-D} p)av
r |4 \4 \4

[8pln-e” D, uldr + [ Sp(n- (=D} @) - [ V 5p- (" D, wav (2:2)
T r \4
- j VSp- k(~DL@)dV =0
|4
Simplifying:
Hroa = [ 87 (@)d0+ [ 84" (p)av - [ (V] &))" CD,udV ~ [ (V] &0)" eD} paV
r v V v (2.53)
[ §¢(n~eTDuu)dT—I5¢(n kD, )T~ [ (V3p)" -¢" D,uaV + [ (Vp)" kD] gV =0
r r Vv \%4
Grouping all volume and surface integrals we obtain:
Hroa = [ S0 (2)dT+ Spln-e" D, u)dr - [ Sp(n- kD p)dr 2.5

~[(Vop)" -e"D,udV +[(Vop)" kD] gV + [ &u” (p)dV — [ (V] )" CD,uaV — [ (V] &) eDypaV =0
Vv Vv Vv v v

We now proceed to group all the integrals that are displacement related and electric potential

related:

Kot = J-&tT (T)dF+I5(0(n : eTDuu)dl"—J‘ d¢(n- kD, @)dl
T T T

(2.55)
~[(Vop)" -e"D,uav —[(V{&)" CD,uaVv +[(Vop)" - kD] gV — [ (V{&0)" eD] gdV + [ &u" (p)dV =0
At this point we proceed to re-arrange the above equation into a y,, =y, form:
J.&f (T)dF+J.&4T(n~eD;(p)dF+J.5¢(n~eTDuu)dF—I5¢(n~KD;(/))dF+J.&4T (p)av =
T T T T v (2.56)

+[ (V)" -e" D,udV + [ (V] &))" CD,udV - [ (V)" - kD gaV + [ (V] &1)" eD] paV
\4 \4 |4 |4

This would mean that the y,, form of our electromechanical problem is:
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Xk =J(V§¢)T ,eTDuudV+f(V;"&4)"‘ CDuudV—J(Vé‘go)T - kD, @V + j (Via) eD,pdV (2.57)
v v v ’

Re-arranging:

X =] (VI&)"CD,udV + [ (V8p)" &' D,udV + [ (VI &0) eDypdV - [ (Vo) - kD] v (2.58)
v \4 v \4

The gradient of the virtual displacement and the virtual potential translate into D, and D¢ as

shown in the equation below:

V'&u=D, &

(2.59)
Vép=D,op

Then we obtain vy, as:

X =|D,"du-CDuaV + [ D,8¢-¢" D,udV + [ D, du-eD}pdV - [ D,Sp- kD, paV (2.60)
|4 \4 \%4 \4

It is interesting to note that the second term and the third term have a combination of D, and
Dg. This would seem to indicate that a single matrix, that combines both electrical and elastic

derivatives is required.

The right hand side term in 2.56 is the definition of vy, which is:

2= I&T(T)df+j5¢(n-eTDuu)dl—‘—j5¢(n- KD;¢)dF+I&T(p)dV 2.61)

r r r v
The derivation of the electro-mechanical equation has been presented in this chapter. Chapter
3 focuses on the FEM as a means of solving the electro-mechanical equations required in

solving structure with piezoelectric materials.
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Chapter 3

FINITE ELEMENT MODEL FOR ELECTRO MECHANICAL SYSTEMS

3.0 Introduction

Analysis based on Finite Element Method (FEM) can be divided into the following steps:

® Development of a computer aided design (CAD) model that represents the continuum

that is being analyzed.

® Meshing process, which involves the discretization of the continuum into finite

elements.

e Evaluation of stiffness matrix of each element in the continuum. The evaluation of the
stifftness matrix for each element is based on the nodal shape functions and the

material matrix assigned to each element in the continuum.

® Assembly of the global stiffness matrix from the element stiffness matrix.

Application of boundary conditions.
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® Solving for the unknowns: In an elastic/piezoelectric structure these unknown are the
2 € 2

nodal displacements “x”, “y” and “2” (where the boundary conditions are not applied)

and nodal electric potentials, Q.

® Post processing, which involves the computation of strain and stress fields based on

the nodal displacements and electric field based on the nodal electric potentials.

The following pages will describe in detail how the mathematical equations derived in

Chapter 2, are represented in FEM form.

3.1 Element Stiffness Matrix

In FEM the continuum/structure is discretized into smaller parts known as elements. It is the
assembly of these smaller elements that models the complete structure. Each element of the
continuum may have different sizes and shapes. The degree of freedom for every node in the
element is part of a series of algebraic equations. The solution to these algebraic equations can
be obtained by direct or indirect mathematical methods. The solution of the algebraic
equations in FEM provides an approximation to the exact solution in all parts of the
continuum that has been modeled. The more elements used in the analysis of the problem the
more accurate the result obtained; unfortunately the longer time required by the solver to
compute the solution. Figure 3.0-a, shows a 20-node brick element, while Figure 3.0-b shows
an 8-node brick element. Our piezoelectric structural solver uses 8 and 20-node brick elements

to discretize the three dimensional structure.
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1 a b
Figure 3.0: (a) 20 node lzrick element, (b) 8 node brick element !

At every node in the element (every number shown in Figure 3.0 with the exception of the
center number that indicates the element number) the nodal shape functions assigned to each
node represent a variable number of degrees of freedoms (dof). For example, every nodal
point is permitted to move in x, y and z, thus three dof. In the case of piezoelectric elements, a
forth degree of freedom, representing electrical potential, is added. The physical quantities,
nodal displacement and electric potential, are described in the elements by polynomial
equations know as nodal shape functions, weight functions or basis functions. These basis
functions are shown in Figure 3.1 (for simplicity the shape functions for a 20-node brick
element are shown only at one corner and one mid-point node). As seen in Figure 3.1, corner
shape functions for a 20-node brick element have an extra term. Also, it is important to note
that the mid-point shape functions for a 20-node brick are divided by four while the corner
shape functions by eight. The physical quantities represented by shape functions (for example
displacement or electric potential) are required to vary smoothly within the element. The
assembly process (enumeration scheme) should be implemented to ensure continuity with the
mesh. Thus, the element is required to have a piecewise-smooth representation of the physical
quantity.
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Shape function for § node brick elements

HFi wy o) = m-(x—aj-(}'+bj-(z—cj ifi=1
-1
8-(a-b-cd
el
8-(a-b-c)
-1
8-(a-b-c)

s(x—a)-r=-h)(z-c) i i=2

Cfx—alofy b)Y (zec) F Q=3 Sample shape functions for a 20 node brick element

S(X-a)-(r+b)o(z4+ ) f i=4

[r+a(yv+(z+ -2 +x+v+3] if i=l

. Zabec
— m+w)-(y+b).(z-c) f i=3 -1 2
8. (a-b-c) P |:(X —Ejl'(}f'l-b)'(Z'l- C):I if 1=9
L T — abe
PR [+ a)-0y-h) (z—c) £ i=6
-1 s
m-(x+a}-(}'—b)-(x+c) i i=7
1 Sat
m-(x+a}-(}'+bj-(z+cj ifi=8
0 othenarise

Figure 3.1: 8 Node brick shape functions and the sample shape functions for 20-node brick
element.
Shape functions are a function of the nodal position and are equal to one, at the node in

question and zero every other node.

An eight node brick has eight nodes per element (one at each corner). The number of degrees
of freedom per node for this element varies from 3 per node, for elastic elements, to 4 per
node for piezoelectric elements. [1]. The displacements/electric potentials in the element are
represented as a sum of the nodal values times the basis functions over each element, as

shown in equation 3.0 [2,3].

u=N, 'Ix_li
(3.0)

=N, 9,
Where,

® uandg are the displacement (u,v,w) and electric field respectively
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o u .and (_0 . 1s the nodal displacement (b_t, , \_/[ , v_v,) and nodal electric potential field

respectively
® N, are the basis functions
® ienumerates the basis function (i =1 to 8 for 8-node brick and 1 to 20 for 20-node
brick).
A virtual electric potential and virtual displacement are also represented in FEM as the sum of

nodal values times the basis functions over each element, as shown in equation 3.1

Si=N,- b,
B (3.1)
op=N, - op,
In chapter two, we derived from the weak formulation equation 3.2, which is the starting point
of our FEM solver:
Xk =D,/ du-CDuaV +[D,5p-¢" D,udV + [ D, Gu-eD}pdV — [ D, 8p- kD, dV  (3.2)
Vv Vv 14 Vv
2= j&/ ()dl + Ié‘(p(n : eTDMu)dF—I5¢(n kD, @)l + j o’ (p)dv
r r r Vv

® Thus, inserting equation 3.0 and 3.1 into 3.2 we obtain:

T o B - T - T o T ~
;g&x=jD“ N;-8it;-CD,N, -t,dV +[D,N,-8¢,-¢' DN, -u;dV + [ DN - 8u;-eD, N, - p.dV
\4 \4 \4
- (3.3)
—~[D,N, -3¢, kDN, - ¢, dV
\4

2, =[N,-& (@)l + [N, -5q0j(n-eTDuNi -uijdr—ij 8¢, (n- KDJN, - @)dC+ [N, - &1 (p)dV
r r r \4

The insertion of the same nodal shape functions for displacements, virtual displacement and
electric potentials into equation 3.2 assumes the use of the Galerkin approximation that results
in a symmetric stiffness matrix K [2]. Rearranging we obtain:
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Z. = &}{j D,/'N,-CD,N, ~dv} u+ 5&7{] D,N,-¢'D,N, ~dv} U+ &}{j D,/'N,-eD!N,dV |,
\4 \4 \4

Kx

_ _ (3.4
-3p, '[Dq,Nj«-D;Ni-dv}g
Z = MD N, -(r)dl“} + 5(/){] N,-(n-¢"D,N, )dl“} ui—aqa{j N, -(n- KD;Ni-)dF} o+ &4,{] N, ~(p)dV}
r r r v
Equation 3.4 can be written in the compact form as equation 3.6 using:
[x]=“ (3.5)
¢
X = O(Kx—b)=0 (36)

where,
® K represents the stiffness matrix
® xrepresents the electric potential and nodal displacements

® b represents the nodal forces acting on the system.

In order to satisfy equation 3.6, Kx-b term must be set equal to zero since the virtual

displacement (u) and the virtual potentials (8¢) cannot be set to zero.

In order to represent the forces applied to the continuum it is necessary to evaluate the vy,
integrals presented in equation 3.4. In our solver, all body forces (for example gravity) are not
considered in the solution, and only the traction (first term on the y, -integral) is accounted for.
Our solver evaluates the traction forces. This evaluation can be done by numerical integration,

as it will be described later in this chapter. In the case of assigning traction forces to a flat
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surface, the equivalent nodal forces may be assigned to each node in the element. This

assignment is done in the & part of the Kx=4 equation.

The assignment of traction forces, acting on the element, depends on the element that is being
used to discretize the continuum. If the continuum is divided into 8-node bricks, then the
contribution of forces over the surface of the element can be simply divided equally among all
of the nodes that form that surface (assuming the surface is flat). If a 20-node brick element is
used then the resulting force, due to the applied traction for that node, is multiplied by (-1/3)
for cotner nodes and by (4/3) for mid-point nodes. This is due to the fact that the 8 node
brick shape functions represent the physical quantity being analyzed linearly from one node to
the next, while in the case of a 20 node brick the representation is quadratic as seen in the

figure below.

Node 1 Node 2 Node Node 2

8 Node Brick 20 Node Brick

Figure 3.2: 8 and 20 node brick nodal shape distribution

The constants of -1/3 and 4/3 for the application of traction on 20 node bricks comes from
evaluating the first term of the y, -integral (equation 3.4) for a unit traction on a flat surface. If
the surface is not flat or other terms of the /-integral are required to be evaluated, the /-integral

needs to be evaluated by numerical integration. This will be described later in this chapter.
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Elements within the continuum are interconnected and thus interact with each other. For
example, each element is required to remain attached to its neighboring elements. Thus,

neighboring elements will not be allowed to overlap nor separate.

® FEquations 3.4 and 3.5 represent the stiffness matrix of the element multiplied by the
dof at every point in the continuum (where x represents the displacement and electrical
field vector array). Equation 3.4 transforms into a FEM representation when the

continuum is represented as an element or a combination of elements.

Array x contains a sequence of all dof within the elements. Some of these degrees of freedoms
are known or assigned and some are not. The assigned degrees of freedoms represent the
boundary conditions applied to the structure. For example, if a displacement in x, y, z or an
electric potential is assigned at any part in the structure this would be assigned to a specific
nodal element and thus be assigned to a member of array x. Therefore, only those terms in x

that are unknown are solved for.

Isolating the stiffness matrix K from array x we find that the stiffness matrix can be

represented as (K is represented by all term inside the brackets):

7 B B B _ B _ T _T _ _ _T
sz{jDu CDu~dV}u+DD(PeTDudV}IH[J.Du qu)dV}o—DDwKDde}” S
v v v v

Where,

e D, is the matrix that maps nodal displacement to strain

u
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® D, is the matrix that maps nodal electric potentials to electric field

® (is the material stiffness matrix
® ¢is the piezoelectric material constants
® Kis the permittivity constant matrix

® T'superscript represents the transpose of the matrices.

As seen in equation 3.7, the stiffness matrix of the element is computed by the summation of
several volume integrals.

In the next few pages we will describe each one of these terms described in equation 3.7. The
D, matrix defined below is the matrix that maps the nodal displacement vector array to the

strain components at a point (X,y,z).

~

(3.8)

I8
=

1
o,
L 1
1l
QS Qo °QqQ
caqQoaqco

Where,
® G, is the derivative with respect to x of the nodal shape function shown in figure 3.1
® G, is the derivative with respect to y of the nodal shape functions and

o Gz is the derivative with respect to z of the nodal shape function.
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The format that equation 3.8 takes has a significant meaning on how the nodal displacements
are mapped to the strain tensor. The displacement vector array at every node is mapped to the

Strain Voight notation at a point (x,y,z) as follows:

8X
£ y y
& [15 } (3.9)
= Y% .
£, “
w
£,
£

Where,

® u,vand ware nodal displacements.
Shown above is a 6 by 1 strain vector. The D, matrix for an 8 node brick would be a 6 by 24
matrix, while the nodal displacement vector would be 24 by 1 for an elastic element. In the

case of a 20 node brick elastic, D,, would be 6 by 60 and the nodal displacement vector would

be 60 by 1.

The lip matrix that maps the electric potential to the electric field is given by:

(3.10)

The vector array of nodal voltages is mapped to the electric field gradient at a point (x,),3) as

follows:

o &
I

|

S

S

(3.11)

Where,
77



® E,E and E, are the electric field in x, yand g

. (;) is the nodal electric potential

The electric field gradient is a 3 by 1 vector obtained by multiplying 15¢ a 3 by 8 matrix, with

an 8 by 1 vector of nodal potentials in the case of an 8 node brick.

The elastic material matrix represented by C in equation 3.7 is the matrix responsible for

mapping the strain to stress for an isotropic material. This matrix is defined as:

M, M, M;, 0 0 0
M, M, M, 0 0 0
C= M, M, M, 0 0 0 6.12)
0 0 0 M, 0 0
0 0 0 0 M 0
0 0 0 0 0 M
Where,
YM.-A-v)
M =M, ,=M, =——— 3.13
1 2 33 A+v)-(1+20) 3.13)
YM. v
M125M13EM21EM23EM31EM32§m (3.14)
YM.
M44EM555M6652(1+V) 3.15)
Where,

e Y M. is the Young’s Modulus of Elasticity. The matrix presented above is for an

isotropic material.
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The elastic stiffness material matrix for PZT-5H is:

[1.203E11 7.518E10 7.509E10 0 0 0 ]
7.518E10 1.203E11 7.509E10 0 0 0
- 7.509E10 7.509E10 1.109E11 0 0 0 N (3.16)
0 0 0 2.105E10 0 0 m’
0 0 0 0 2.105E10 0
| 0 0 0 0 0 2.257E10]

The mapping transformation matrix that maps electric field, E, to stress, o, in the strain charge

form is defined as matrix 7 in equation 3.17.

0 0 d,
0 0 d,

gl 00 dy (3.17)
0 dy O
ds 0 0
0 0 0

The transpose of ¢ is the matrix that maps strain (¢) to dielectric displacement (D) in the strain

charge form. In the case of PZT-5A this was determined as:

0 0 0 0 58 0
d"=| 0 0 0 584 0 0 .10‘12.; (3.18)
-171 =171 374 0 0 O

Since we are using the Stress-Charge form of the electromechanical coupling equations the 4 -

matrix is transformed to the “¢” matrix (as shown in section 2.1 of chapter 2) in the following

units:

0 0 0 0 12295 0
e=| 0 0 0 1225 o o2 (3.19)
25351 -5.351 15783 0 o o "
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The permittivity constant matrix is the mapping transformation matrix that maps the electric
field to the dielectric displacement in the strain charge form of the constitutive equations. This

matrix is defined as [4]:

(& 00
k=0 x,, O (3.20)
0 0 «xy

Where, k;,, K, and &;; are the permittivity constants.

In the case of PZT-5A the permittivity matrix is as follows:

~ (17300 0 .
k=] 0 1730 0 |-8.854-107"*.— (3.21)
0 0 1700 "

For FEM purpose we are using the Stress-Charge form of the electromechanical coupling

equation. Thus the permittivity matrix would have the following units:

8.137E-9 0 0 .
k= 0 8.137E-9 R (3.22)
kgm
0 0 7.319E -9
3.1.1 The Jacobian Matrix

In the meshing process of the structure not all elements that describe the structure conform to

perfect cubic elements, since not all structures can be fully characterized by straight lines. In
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FEM the meshing program will deform the elements to better approximate the shape of the
structure. When elements are geometrically deformed into different shapes in order for the
elements to fit the contour of the continuum that will be analyzed (the deformation of the
element in this case is not due to the application of a load but rather due to the need for the
element to fit the geometry of the structure), the stiffness matrix of the element that is
deformed is affected. In FEM applications, it is typical to transform the deformed element to a
standard element that has an origin at the center 0,0,0 with node coordiantes that range from -

1,-1,-1 to +1,+1,+1 as shown in Figure 3.3.

{(-1,1,-1) (1.1.-1)

Volume 1 Volume 2

Figure 3.3: Jacobian Matrix Transformation

The deformed element in the Cartesian system (x,y,z), volume 2 in Figure 3.3, is related to the
standard element in the natural coordinate system r,st, (volume 1 in Figure 3.3). In the
Cartesian coordinate system, the volume of the element, is a function of the volume of the
element in the 1,s,t coordinate system. In the reference element the volume integration is easily

obtained and thus the stiffness matrix of the element can be computed. In order to perform
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the integration for volume 2, the transformation to natural coordinates can be used and then

the integrals can be obtained as:

fdv, = | fdetJdvy, (3.23a)
=]

V2

where, det ] is the determinant of the Jacobian which is defined by:

N, x; Ny, N,z
J = Z N;,x; Ny, N,z (3.23b)
N, x; N,y N,z

where,

oMr

are the derivatives of the nodal shape functions with respect to the r,s,t coordinate

system

® x J g is the point in the Cartesian coordinate system were the Jacobian is being

evaluated at.

It is important to note that the Jacobian is not actually evaluated at the nodal points, but at the
Gauss points of the element. An 8-node brick element usually has eight gauss points, while a
twenty-node brick element usually has twenty-seven gauss points. Gauss points are points
optimally placed within the volume that is being integrated. A more detail explanation of

Gauss points will be described later this chapter.

The determinant of the Jacobian is then computed based on equation 3.23. Which multiplies
the complete stiffness matrix at a Gauss point. In the next section we will describe how the

determinant of the Jacobian affects the stiffness matrix.
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3.1.2 Abbreviated Stiffness Matrix

Equation 3.24 is an abbreviated version of equation 3.7. In most FEM literature the stiffness
matrix is described as a more concise equation, which combines all of the integrals and

matrices shown in equation 3.7.

The stiffness matrix of a piezoelectric or elastic element is then computed as follows:
Kpiezo=[[|B" -D-B-detJ dxdydz (3.24)

Where,

® D is the unified material matrix (equation 2.24)

® Bis the combined mapping transformation matrix for nodal displacement to strain

and nodal electric potential to electric field

® det ] is the determinant of the Jacobian.
The form of the B-matrix and the D-matrix would vary if the element describes the
piezoelectric effect or just the elastic effects. The next few pages will describe the combined

material and B-matrix for piezoelectric and elastic effect.

3.1.3 Unified B-Matrix Definition

For problems where nodal displacement and electric potential are present, the generalized B-
matrix is the matrix that transforms the displacement and electric potential distribution in the

continuum to strain and electric field, as shown in equation 3.25.
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(ng Do 0 u (3.25)
E 0 D |lo

Where, # and ¢ are the nodal displacements in x, y and g, and the nodal electric potentials

respectively. The unified B-matrix can be mathematically represented as:

G, 0 0 0
0 G, 0 0
0 0 G, 0
G, G, 0 0|/
[B]=| 0 G. G, o0 (”} (3.26)
G, 0 G, 0]|\?
0 0 0 G,
0 0 0 G,
0 0 0 G

I8

Where, G,, G, and G, are the spatial gradients of the basis functions with respect to x, y and z,
respectively evaluated at point x; y, z. The first 6 rows and 3 columns represent the D, matrix
of an elastic element while the last column and rows 7 to 9 represent the modification of the
B-matrix in order to take into account the piezoelectric effect (D). It is this last column and

last 3 rows that map electric potential to electric field.

3.2 Integration Scheme

In order to evaluate the stiffness matrix of an element it is necessary to evaluate it, by
integrating over the volume of the element. Numerical integration is essential in determining
the K matrix in finite element code. Numerical integration is necessary when an analytical

equation is not readily available. There are many forms of numerical integration techniques,
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such as the Simpson’s rule, the trapezoidal rule and the Gauss rule. We will discuss very briefly

the Gauss rule for a one-dimensional case.

f=piS

=4(D

Figure 3.4: Gauss Numerical Integration [1]

Figure 3.4, is a 1-D diagram of how the area under the curve is obtained. This evaluation is

performed using integration over the gauss points. Gauss points are points optimally placed

within the area that is being integrated. Table 3.0 shows the Gauss points used for integrating

over an 8-node brick element. For a 20-node brick element there are twenty-seven gauss

points.

Table 3.0: Gauss Points for an 8 Node Brick Element [5]

Gauss Point No.

Gauss Point in X

Gauss Pointin Y

Gauss Pointin Z

1 -0.57735027 -0.57735027 -0.57735027
2 0.57735027 -0.57735027 -0.57735027
3 0.57735027 0.57735027 -0.57735027
4 -0.57735027 0.57735027 -0.57735027
5 -0.57735027 -0.57735027 0.57735027
6 0.57735027 -0.57735027 0.57735027
7 0.57735027 0.57735027 0.57735027
8 -0.57735027 0.57735027 0.57735027
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The area under the curve shown in Figure 3.4 is represented by equation 3.28:

= j¢ dg (3.28)

As seen in equation 3.28, @is a function of &. The area under the curve @ can be approximated

by a rectangle (base - height where the height is equal to ¢,). The base would go from -1 to +1,
thus making a base-of-length 2. The area can be computed by multiplying the base times the
height, which in this case the height is equal to one. This is an exact solution for a straight line

of any finite slope.

Mathematically the Gauss rule integration scheme for a 1-D case can be represented as

follows: .
I=[pds~Wp+W,p,+--+W,g,

-1
(3.29)
Where, @, are points on the curve separated by a distance & and multiplied by a weight factor
that depends on the order of the polynomial representing the function. This concept can be
expanded to two and three dimensions. Our FEM solver uses Gauss integration in order to
compute the stiffness matrix of the element. A generalized statement of the Gauss rules says:

“a polynomial of degree 2n-1 is integrated exactly by n-point Gauss quadrature. Use of more

than n points will still produce the exact result.” [1].

For 3-D elements if we have a quadrature formula for function of a single variable,

1 m
[ x%dx= YA v, (3.292)
-1 i=1

a=0],...d (3.29b)
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then it is not difficult to see that the integration formula:
111 a p m m m a B
xOyP Y dzdydx=3 Y S A -A; A -vE v y) 3.29¢
VAR By AR | J k
—1-1-1 i=1j=1k=1

is also exact for 0< @, B,y <d ."

Note that products A4, A, - A, determine weights for Gauss points with coordinates (x=2, y=2,

z=2,) and the total number of Gauss points in 3D is 7.

In the case of the Gaussian integration scheme, the integral is evaluated at the gauss points. In
the case of an 8-node brick element the weight factors are equal to one. In the case of a 20-
node brick element the Gauss points and their corresponding weight factors are shown in
Table 3.1. It is also important to note that a 20-node brick element integrates over 27 Gauss

points while the 8-node brick element integrates over 8 Gauss points.

Table 3.1: Gauss Points and Weight Functions for 20-Node brick elements obtained using the

equations in [5] and one dimensional gauss points and weight for n=3 from [0]

Gauss Point No. | Gauss Pointin X | Gauss Point Gauss Point Weight

inY inZ Factor
1 -0.77459667 -0.77459667 -0.77459667 0.171467764
2 0.77459667 -0.77459667 -0.77459667 0.171467764
3 0.77459667 0.77459667 -0.77459667 0.171467764
4 -0.77459667 0.77459667 -0.77459667 0.171467764
5 -0.77459667 -0.77459667 0.77459667 0.171467764
6 0.77459667 -0.77459667 0.77459667 0.171467764
7 0.77459667 0.77459667 0.77459667 0.171467764
8 -0.77459667 0.77459667 0.77459667 0.171467764
9 0 -0.77459667 -0.77459667 0.274348422
10 0.77459667 0 -0.77459667 0.274348422
11 0 0.77459667 -0.77459667 0.274348422
12 -0.77459667 0 -0.77459667 0.274348422
13 -0.77459667 -0.77459667 0 0.274348422
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Table 3.1-Continuation: Gauss Points and Weight Functions for 20-Node brick elements
obtained using the equations in [5] and one dimensional gauss points and weight for n=3

from [6]

Gauss Point No. | Gauss Pointin X | Gauss Point | Gauss Point Weight

inY inZ Factor
14 0.77459667 -0.77459667 0 0.274348422
15 0.77459667 0.77459667 0 0.274348422
16 -0.77459667 0.77459667 0 0.274348422
17 0 -0.77459667 0.77459667 0.274348422
18 0.77459667 0 0.77459667 0.274348422
19 0 0.77459667 0.77459667 0.274348422
20 -0.77459667 0 0.77459667 0.274348422
21 0 0 -0.77459667 0.438957476
22 0 -0.77459667 0 0.438957476
23 0.77459667 0 0 0.438957476
24 0 0.77459667 0 0.438957476
25 -0.77459667 0 0 0.438957476
26 0 0 0.77459667 0.438957476
27 0 0 0 0.702331962

Once the stiffness matrix for each element within the continuum is computed, it is necessary

to obtain a global stiffness matrix. The following section describes how the assembly

procedure is performed in order to obtain the global stiffness matrix of the continuum.

3.3 Assembly Procedure

The purpose of the assembly procedure is to produce a global stiffness matrix. The FEM

global stiffness matrix K is shown in equation 3.30:

Where,

K-x=b
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® Krepresents the FEM global stiffness matrix, which is obtained from the assembly of

the individual stiffness matrix for each element

® xrepresent the electric potential and displacement array, and

® ) represents the applied forces.

In the assembly process the node numbering plays an important role. Each node represents

one or several degrees of freedom (dof), as shown in Figure 3.5
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Figure 3.5: Degree of freedom for a 20-node brick element and 8-node brick element

The local numbering scheme for an 8-node brick is set from one to eight and it corresponds to
the numbering of nodal basis functions. In the case of the 20-node brick then the numbering
is set from one to twenty and it also corresponds to the basis function. The mesher assigns the
global numbering scheme. A good mesher will try to have a numbering scheme as to lower the
bandwidth of the assembly matrix. The numbering of the elements in the continuum is very

important in order to optimize the structure of the stiffness matrix, so that it has a minimum

bandwidth.
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The letters a,b,c in brackets represents the coordinate points in the natural coordinate system
of the element (in the case of the 20-node brick only the corner nodes are shown due to space
constraint in the figure). The values of a, b and c are -1, 0 or +1 in the standard element in
local coordinate systems. The numbers beside each node, in brackets, represents the degree of
freedom, for example dof numbers 1, 2 and 3 represents the displacements in x, y and z
directions at node 1. This indicates that the values of stiffness for node one are placed in
row/columns 1, 2 and 3 in the global stiffness matrix. Every node in every element is assigned
two numbers. The first number is defined in the local numbering scheme within the element,
while the second number is defined in the global numbering scheme produced by the

mesher/pre-processor.

1 _5
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oo .o oo oo
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@ @) Structure

Figure 3.6: Assembly Procedure [1]

Figure 3.6 shows how the numbering of each node in the element indicates the contribution
from local stiffness matrix in the elements of the global stiffness matrix (assuming 1 dof per
node). In the case of the triangular element (1) has global node numbers 2, 3, and 5. In this
case it is assumed that each node has only one degree of freedom, thus the stiffness for each

degree of freedom is located in columns and rows, 2, 3, and 5. In the case of the square
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element (element 2 in figure 3.6) the degree of freedoms are related to nodes 1, 2, 4 and 5.
Thus, in the global stiffness matrix they would occupy row and column positions related to
these degrees of freedoms, 1, 2, 4 and 5. The global stiffness matrix is the summation of the

individual stiffness matrix for every element.

If the elements have more than one dof per node then the topology matrix determines the
correspondence between the local numbers of dof and numbers assigned to dof in global
numbering scheme. The contribution of the element stiffness matrices into the global stiffness

matrix follows the same correspondence as the topology matrix.

Element 1 Element 2 Element 3

12
14

I 1
3 f 10 10 t
I 1
I 1

Elerment 4 Elerment 5

20 24
20 7

13 17 21

Figure 3.7: Topology of a 5-element beam

Figure 3.7 shows the example of the numbering scheme of 5-element beam with 3 degree of

freedom per node.

The resulting global stiffness matrix would have the following shape as shown in Figure 3.8.
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Figure 3.8: Global stiffness matrix of a 5 element beam

As seen in Figure 3.8 the global stiffness matrix, which is always a square matrix, has 72 rows
and columns (3 degree of freedom per node * 24 dof in total). All the blank spacing in Figure
3.8 is filled with zeros, thus creating a symmetric banded matrix. The lower the band the less
memory required to solve the problem. Once the global stiffness matrix is obtained it is

necessary to apply the boundary condition.

3.4 Application of Boundary Conditions

The application of boundary conditions (B.C.) is an important step of FEM. The continuum
being simulated is applied with different boundary conditions, such as B.C in terms of
displacement and forces. Boundary Conditions, in terms of displacements and forces, are
applied to one or more surface (or volume) of the continuum. In fully constrained B.C. one or
more surfaces (or volumes) are fully fixed such that no displacement of the constrained surface
is permitted. In piezoelectric structure, electric potential is assigned to different regions of the
structure, which is also a B.C. In the next few paragraphs the application of B.C. on the global

stiffness matrix and load vector are described.

92



In structural problems B.C., such as displacement and forces, are applied on the structure. The
displacement and forces are applied at the nodal points. Equation 3.31 shows a simplified
example of a typical FEM problem that we are trying to solve. Where K is the global stiffness
matrix, #,, v, and w, represents the displacement vector (x array) and f,, f,, and f; the forces

acting on the continuum.

K
K, K, Ky||v|=|/f (3.31)
K K

The applications of force B.C. are prescribed by assigning the values of forces on the force
vector (f,, /,, and f;) at the required nodes. The application of traction or pressure on a surface
of the continuum is performed by decomposing the normal and tangential components of the

pressure/traction on the nodes of the element.

If the displacement direction #, is set as a known displacement, then the contributions of
forces corresponding to », are subtracted from all other nodal forces and the column and row
for », is eliminated. Equation 3.32 shows the application of such displacement boundary

condition.

K, 0 K, U fi— K
0 1 0 ||v|= v, (3.32)
K, 0 Ky||w f3 =Ky,

For every displacement boundary condition, a row and column of the global stiffness matrix

representing the corresponding dof is eliminated. This global stiffness matrix is further

93



reduced but remains a square matrix. This reduction operation results in a modified global

stiffness matrix prior to solving. The final equation before solving is shown as equation 3.33:
K11 K13 | |ul -K,v
R (3.33)
K31 K33 [v3 fi— Ky,
Equation 3.33 is smaller in size but it is still a symmetric banded matrix.

In the case of piezoelectric structures, electric potential boundary conditions are applied.
Equation 3.31 would have an extra degree of freedom, accounting for the electric potential as

shown in equation 3.34:

K, K, K; K,||u fi
Ky, Ky Ky Ky||w _ 1 (3.34)
Ky, Ky Ky Ky | |w fs
Ky K, Kg Kyl ¢,

Where,

® u,v,w are nodal displacements

e f f f; are nodal forces

® ¢ is the electric potential and

® (Cf, is the electric charge force.

The application of B.C. would be similarly performed as in equation 3.33
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K, K, K O0f|u fi— Ko
K, K, K, O AWMz =Ky, (3.35)
Ky, Ky, Ky 0]|w =Ky

0 0 o 1|g ?

The units for K, to Ky; are Newton/meter. The x vector array (#,, v, and w,) also has units of

meter, thus the units of f,, £, and f; are all in Newton.

In the case of K, the equation is still have the same form as equation 3.27 with a material
matrix (D), consisting of piezoelectric constants in Amp-Sec. Thus, when multiplied by B', B,

dx, dy and dz, followed by the units of electric potential (volts) in the x array we obtain force

in Newton. This is shown in equation 3.35, and K., and K, would have the same units.

K, is a different case since its material matrix is formed by the permittivity constants. Thus,
the units of the D matrix would be in F/m when D is multiplied by B", B, dx, dy, dz and
electric potential (voltage) in the x array. Thus, we end up with units of Amp-Sec, which is the

equivalent of a Coulomb.

It is important to note that the force boundary conditions are applied to the 4 array in equation
3.30, while the electric potential are assigned to the x array. The resulting equation, describing
the problem, is a modified version of equation 3.30, where the global stiffness matrix K, the x

array and the 4 force vectors are modified (as described above) and shown in equation 3.306:

Kmod ’ ‘xmod = b (336>

mod
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The procedure shown above is used to implement boundary conditions in our FEM solver.
Once the global stiffness matrix has been reduced by elimination of the columns and rows
(rows filled with all zeros and a one in equation 3.32 and 3.35) the next step is solving for all

unknown in the x array.

3.5 Solving

Solving of multiple equations is one of the primary tasks in FEM. In creating a FEM solver
one can decide to use a direct or an indirect solver. Indirect solvers consist in iterative
techniques such as Conjugate Gradient Methods, which will be briefly described in the sparse
matrix solver section of this chapter [7, 8]. Many techniques exist in direct solvers, this thesis
will briefly explain some of the most common direct methods for solving multiple linear

equations. Equation 3.36 is the equation being solved:
Kmod “Xinod = b

mod

The x array represents all of the unknowns, the & vector array all of the known and the K

matrix the final stiffness matrix with boundary conditions applied.

The x array can be obtained by multiplying the inverse of the stiffness matrix with the 4 array

as shown in equation 3.37:

(3.37)
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Our finite element analysis solver uses an off-the-shelf matrix inversion code [9]. The solution
for nodal displacement and electric potential is obtained by multiplying the inverse matrix by
the assigned nodal forces as shown in equation 3.37. This method of solving resulted in a very
inefficient method for solving linear equations, due to the amount of computational resources
(memory) required in order to carry out the inverse matrix operation. Our initial attempts
stored the complete stiffness matrix and inverted it; this prohibits us from analyzing problems
with more than a few hundred elements. It was then necessary to modify the inversion code
and use a symmetric band stiffness matrix (all off diagonal non zeros past a specific band are
not stored). This aided in allowing us to double the amount of elements that we could analyze.
Under these conditions we can run up to 1,000 element 20-node bricks and 6,000 8-node brick
elements. This consumes in the order of 2 Gigabytes of memory, which is the upper limit of a
32-bit application in a Microsoft Windows operating system. Future work in this code will
require the modification of the solving method. Some of the possible methods used are briefly

described next.

Several direct methods for solving system of linear equations exist, such as:

®  Gaussian Elimination with back substitution

®  Gauss-Jordan elimination

® Sparse Linear System Solvers with direct or indirect method of solving.
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3.5.1 Gaussian Elimination with back substitution

In Gaussian elimination the stiffness matrix is not fully reduced to the identity matrix, in order

to obtain the inverse of the matrix but only half way as to obtain the following matrix:

a, 4ap
0 a,
0 0
0 0

Where,

| | X b,
oa | | X2 | _ b, (3.38)
A3y | | X3 b,
Ay | | X4 b,

® 4 _and b coefficients are not the original matrix values, but modified in order to obtain

the lower triangle filled with zeros. The reduction of the original matrix and the 4 vector

array is performed by row operations.

® x are the unknowns in question.

The form of equation 3.38 allows immediately for the solution of x; since it is already isolated.

This can be used to solve x;. Solving for x, allows solving x, and so forth. This procedure is

known as back substitution and can be mathematically described as [7]:

1
X, =—
a;

Where,

b, — iayxj} (3.39)

j=i+l



® N is the number of unknowns.

3.5.2 Gauss Jordan elimination

The Gauss Jordan elimination method is one of the most reliable methods for solving linear
equations. It is not as fast as the Gaussian elimination method. It solves the inverse of the
matrix. This provides an advantage that if the & vector array ever changes it will not be

necessary to compute the inverse matrix since it has previously been computed.

Gauss Jordan elimination consists in the application of 3 operations to the following equation:

ay 4dp G a4y X Yu Yo Yz Y by 1000
G Ay Ay Ay | || 4 U Yoo Yoo Va3 V|| b, U 0100 (3.40)
Qi3 Gy Ay Ay X3 Yiso Yoz Yiz Vas b, 0010
Ay Aoy A3y Ay Xy Yiao Vou Vs Yauu b, 0 0 01

Where,

e U is the augmentation operator.

In this case the following operations are performed, as explained in the book Numerical

Recipes in C:

® “Interchanging any two rows of A and the corresponding rows of the b’s and of 1,
does not change (or scramble in any way) the solution x’s and Y. Rather, it just

corresponds to writing the same set of linear equations in a different order.
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® Likewise, the solution set is unchanged and in no way scrambled if we replace any
row in A by a linear combination of itself and any other row, as long as we do the
same linear combination of the rows of the b’s and 1 (which then is no longer the
identity matrix, of course).

® Interchanging any two columns of A gives the same solution set only if we
simultaneously interchange corresponding rows of the x’s and of Y. In other words,
this interchange scrambles the order of the rows in the solution. If we do this, we

will need to unscramble the solution by restoring the rows to their original order.”,

[7], page 37.

The result of these three operations is an A matrix that transforms to the Identity matrix, a Y
matrix that becomes the inverse of the original A matrix and the solution to the equations on

the right hand side of equation 3.40.

As part of the Gauss Jordan elimination method the division of rows by diagonal elements are
required. In some cases the diagonal element will be zero. In this case Gauss Jordan would
produce division by zero during implementation. For this reason it is necessary to apply a
pivoting technique. The pivoting technique consists of the re-arrangement of rows (or rows
and columns) in order to have a diagonal element in the desired location, from which the
element is to be taken from and which has a non-zero value. Since we don’t wish to alter the
identity matrix that has been produced till the encountering of the zero diagonal elements, we

proceed to choose the element on the row or below the row we are about to normalize.
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From memory consumption point of view the storage of the identity matrix is not required
since it is a very simple matrix that is zero everywhere and ones at the diagonal. The inverse A
is built up in the A matrix storage space. The results to the solution of equations can be built

up in b since once the columns of A have been transformed; the row in b is not used again.

3.5.3 Sparse Linear Systems

In solving a system of linear equations the global stiffness matrix is filled with mostly zeros,
this creates very large global stiffness matrices that consume a large amount of the available
system memory. Sparse linear solvers take advantage of only storing the non-zero values thus,

saving time and space.

A sparse matrix may have different patterns of sparsity. Some sparse matrixes are more

complicated to solve than others. Figure 3.9, shows some of these typical patterns of sparsity.
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Figure 3.9: Sparsity patterns [7]

a) Band diagonal,
b) Block triangular,
¢) Bloc tridiagonal,
d) Singly bordered block diagonal,
e) Doubly bordered block diagonal,
f) Singly bordered block triangular,
@) Bordered band —triangular,
h) Singly bordered band diagonal
1)  Doubly bordered band diagonal,
j) and k) others.

Our solver stores the global stiffness matrix as a band diagonal. Several techniques can be

used to solve a linear system of equations as described. This thesis will concentrate on briefly
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describing the sparse matrix memory allocation technique, followed by a brief explanation of

the Conjugate Gradient Method for Sparse Systems in the indirect method approach.

3.5.3.1 Sparse Matrix memory allocation

One of the primary advantages of the memory allocation of a sparse matrix system is that only
the numbers of the matrix that are non-zero are stored. This can be seen in the following
example of a matrix of the form of equation 3.41:

9 3/2 6 3/4 3
3/2 1/2 0 0 0
k.=l 6 0o 12 0o o (341
3/4 0 0 5/8 0
3 0O 0 0 16

Matrix K, (considered a symmetrical sparse matrix) would be stored in a 1-D atray in the
form of:

[A]=[9 3/2 6 3/4 3 1/2 1/2 5/8 16]
[Coll=1 2 3 4 5 2 3 4 5] (3.42)
[Row]=[1 6 7 8 9 10]

Since the matrix is symmetrical we only need to store the non-zero elements in the upper

triangle of the matrix, including the diagonal of the matrix.

This type of storage produces a very compressed matrix that will only store the necessary
values in order to perform the operations required to produce the solution to a set of linear

system equations.
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3.5.3.2 Conjugate Gradient Method for Sparse Systen

The conjugate gradient method is an iterative solution to the system of linear equations of

equation 3.30:
K-x=b

The method allows for the solution to N x N linear systems, based on the minimization of

equation 3.43:

f)=—x-K-x-b-x (3.43)

1
2
The minimization of equation 3.43 is done through the minimization of the gradient of f{x).

When the gradient of f{x) is zero we obtain the equivalent of the equation Kx=b. Equation

3.44 shows the gradient of f(x):
Vf=K-x-b (3.44)

The solving procedure is described in Numerical Recipes in C [7, page 84

“The minimization is carried out by generating a succession of search directions p, and
improved minimizers x, At each stage a quantity a, is found that minimizes fx, + a,p,), and

X,.,1s set equal to the new point x, + a,p,.
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The p, and x, are built up in such a way that x,,, is also the minimizer of f over the whole
vector space of directions already taken, {p,, p, ... ,p,}. After N iterations you arrive at the

minimizer over the entire vector space, i.e., the solution to the equation”

This method of solving and storing large matrix will be part of the future work required to
improve our solver. The need to solve larger systems is evident due to the limitations when the
complete global stiffness band matrix is stored in memory and inverted (maximum of 2
Gigabyte memory for Win 32 bit applications in Microsoft Windows). In our solver this
limitation is reached when a structure is modeled with approximately 1,000 elements 20-node

brick and 6,000 elements 8-node bricks.

3.6 Post-Processing

The post processing consists in the calculation and graphic representation of:

® Strain field,

®  Stress field.

The following sections will describe how each parameter is obtained.
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3.6.1 Strain field

The strain field is obtained from the displacement field. The strain is computed at the gauss

points of each element. The strain is obtained by using equation 3.9:

gx
g, .
“|=[p,] | v
£, .
€yz
E

Where # » and w represent the displacement fields as indicated by equation 3.0, while D,
represent the gradient of the nodal shape functions, as shown in equation 3.8. The
displacement field and the electric potential are obtained directly from solving equation 3.37.
The electric potential field and displacement field are evaluated at the nodes (vs. gauss points)
and stored in a text file for GID (pre/post processor) to transform the displacement and

electric potential field into a graphical representation.

The strain is computed at every gauss point within the element. In the case of an 8-node brick
this represents 8 gauss points while in the case of 20-node bricks we compute D, at 27 gauss

points. The result of this computation is then printed out to a text file in the following form:
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Table 3.2: Example of Strain Output at one nodal point

Nodal e, -otrain | g -Strain | e,-Strain | ¢ -Strain | e -Strain | e_-Strain
Point ) ' '

1 -2.6e-9 5.2¢-10 6.9¢-18 -5.6e-5 | -5.7e-10 | -0.00213
-1.11e-9 5.21e-10 | -1.38e-17 | -5.83e-5 | -7.22¢-10 | -0.00223

-1.11e-9 7.67¢-10 | -6.93e-18 | -5.83¢-5 | -2.21e-10 | -0.0022

-2.66e-9 7.64¢-10 | 4.33e-18 | -5.68e-5 | -3.57¢-10 | -0.0021

6.16e-10 7.66e-10 | 1.73e-17 | 0.000109 | -5.88e-10 | -0.0021

1.66¢-9 7.76e-10 0 0.000116 | -7.71e-10 | -0.0022

1.665¢-9 5.29¢-10 | -2.08e-17 | 0.00011 | -1.75e-10 | -0.0022
6.1602¢-10 | 5.32¢-10 | 2.75e-17 | 0.000109 | -3.49¢-10 | -0.00214

The results are printed to a text file with the name of mesh.res. This file contains information

on the displacement field, electric potential field, strain field (shown in Table 3.2) and the

stress field. The calculation of the stress field is shown next.

3.6.2 Stress field

The stress field is computed as a two-step process as indicated by the electromechanical

constitutive equations shown in Chapter 2 (equation 2.19):

The material matrix Cg,, (a 6 by 6 matrix) is multiplied with the strain vector evaluated at every

gauss points (a 6 by 1 vector as shown in table 3.1). The result of this is stored in memory until

o=C..—¢eE

Stiff
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the contribution of the stress, due to the electric field, is obtained. The calculation of the stress
contribution, due to the electric field, is computed by multiplying the piezoelectric constant

9
4

matrix “¢” (Equation 3.19) with the electric field vector (a 3 by 1 vector). The two stress terms
are then subtracted as described by the electro-mechanical constitutive equation. The results
obtained at each gauss points are saved to the mesh.res file in the same format as described in

Table 3.1. These results are then read by the pre/post processor and transformed by GID into

a graphical representation of the strain and stress field.

3.7 Summary

This chapter shows the equations used in the calculation of the stiffness matrix for a
piezoelectric element. The FEM analysis equations are reviewed and how the different steps
for assembly, boundary conditions and solving are evaluated. Finally the post processing
equations are also described. Chapter 4 will present the validation problems for the elastic and

piezoelectric elements.
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Chapter 4

FINITE ELEMENT SOLVER VALIDATION

4.0 Introduction

A series of validation tests for elastic and piezoelectric elements were conducted. A set of
standard tests developed by McNeal and Harden [1] is used to determine the accuracy of
elastic elements. The intentions of these tests are not for testing the efficiency of the solver,
since they are small in the number of elements used, but instead to test the accuracy of the
elements under different conditions. Not all of the McNeal and Harden tests were
implemented since it is not the intention of the author to create a universal solver. It is the
primary intention of the author to prove the use of finite element methods (FEM) as a means
of solving problems that use piezoelectric elements and the limitations of the developed

elements under different type of deformations.

In FEM it is necessary to assure that the results obtained are accurate. The MacNeal and
Harden problem tests provide a means for testing the accuracy of the elements and all of the
functions that comprise a finite element solver. The proposed tests by MacNeal and Harden

for solid elements are [1]:
® DPatch test
e Straight cantilever beam

® (Curved beam
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® Twisted beam

® Rectangular plate
® Scordelis-L.o Roof
® Spherical Shell

® Thick-Walled Cylinder.

All of the tests mentioned above are required to proof the performance of any finite element
code that is intended as a universal solver that uses solid elements. The FEM solver that we
have developed is not a universal solver and it is not intended to be one at this time. As part of
this thesis we have implemented the patch test, straight cantilever beam and the rectangular
plate test. We have selected these tests because they are relevant to the type of problems which
were studied. In the case of piezoelectric elements a set of standard tests are not available.

Thus, we have proposed a series of tests that for which analytical solutions are available.

4.1 Patch Test

In order to assure convergence to the exact solution, R. Cook, D. Malkus and M. Plesha [2]
describe three requirements:

1. The field that is computed (say displacement #) within each element must be
represented by a complete polynomial of degree . It is said that a polynomial is
complete when it is of high enough term to represent the exact solution.

2. Continuity must exist for the described field and its derivatives (order 7-1) along the

boundaries of the element.
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3. The continuum can be described as a mesh by means of the elements. Boundary
conditions on the mesh are assigned a constant value of any of the derivatives of the
displacement field. As the mesh is refined the elements must display the constant value
assigned.

The patch is one of the required tests to pass when developing a solid element. A successfully
pass of the patch test guarantees that the mathematics developed in chapter three for the

element have been derived correctly and propetly translated into a computer code.

The patch test is also a necessary condition in order to assure that the element used in the
FEM model converges to an exact solution of the problem, as the mesh of the continuum is

refined.

The first step in implementing the patch test is to create a mesh of elements as described in

Figure 4.1. The locations of all internal nodes in the patch test are found in Table 4.1.

Figure 4.1: Patch Test.
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Table 4.1: Location of the internal nodes in the Patch Test.

Point No. X Y Z
1 0.249 0.342 0.192
2 0.826 0.288 0.288
3 0.850 0.649 0.263
4 0.273 0.750 0.230
5 0.320 0.186 0.643
6 0.677 0.305 0.683
7 0.788 0.693 0.644
8 0.165 0.745 0.702

MacNeal and Harden provide the material properties and the boundary conditions for the
solid patch test. They set the Young’s Modulus of elasticity, E, to 1.0E6 and the Poissons

ratio to 0.25.

After the mesh has been created, the boundary conditions are set as displacement at each

corner nodes as a function of x, y and g as shown in equation 4.1:

u=10"Qx+y+2z)/2
y=10"(x+2y+2)/2 @.1)
z=10"(x+y+22)/2

The theoretical solution to the patch test problem is given by:

“4.2)

The results of patch test on 20-node bricks are described next. Our 20-node brick element
passes the patch test, as seen in the figures below. All of the normal stresses and shear stresses

agree with the theoretical results presented in equation (4.2).
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Figure 4.2: o results on 20-node brick patch test.

Figure 4.3 shows the results of the shear stress on the 20-node brick patch test.
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Figure 4.3: 1 shear stress on 20-node brick patch test.

As seen in the results presented above, we can conclude that the 20-node brick element passes

the patch test problem.
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The patch test was also performed on the 8-node brick and the results produced are exactly

the same as those produced for a 20-node brick.

4.2 Straight cantilever beam test

Figure 4.4 shows the types of elements used for the straight cantilever beam test. Type 4,
element has a rectangular shape, while 4 is trapezoidal and, ¢ is a parallelogram element. In all
three cases a load tip is applied to create a deformation in extension, in-plane shear and out-of-
plane shear. The load tip of in-plane and out-of-plane shear produces bending deformation of
the beam. All beams have been meshed with a total of six elements along the length and one

element through the height and thickness, as seen in Figure 4.4.

(a) Rectangular Elements

(b) Trapezoidal Elements

(c) Parallelogram Elements

Figure 4.4: Straight Cantilever Beam, a) with rectangular elements, b) with trapezoidal
elements and c) with parallelogram elements.
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The straight cantilever beam has a length of 6 units, a depth of 0.1 units and a width of 0.2
units. The material properties for this elastic beam are set to have a Young Modulus of 1.0E7
and Poisson ratio of 0.3. Table 4.2 shows the theoretical displacement and the corresponding

results for 8 and 20-node brick elastic elements.

Table 4.2: Straight Cantilever Beam for 20-Node Brick Elements.

Tip load direction” Displacement in direction of load
Straight Beam 20-Node Brick Percentage
Theoretical Results Difference
Extension (type ) 3.0E-5 2.98E-5 0.66%
Extension (type b) 3.0E-5 2.99E-5 0.33%
Extension (type c) 3.0E-5 2.99E-5 0.33%
In Plane Shear (a) 0.1081 0.1049 2.96%
In Plane Shear (b) 0.1081 0.0955 11.66%
In Plane Shear (c) 0.1081 0.1044 3.42%
Out of Plane Shear (a) 0.4321 0.4151 3.93%
Out of Plane Shear (b) 0.4321 0.4055 6.16%
Out of Plane Shear (c) 0.4321 0.4055 06.16%

¥ The type a, b and c for each tip load direction refers to the element type described in figure 4.4

As seen in Table 4.2, the results show that the percentage differences are all within 10%, with
the exception of the in-plane shearing (b) which is only slightly higher. In the case of in-plane

shearing a greater number of elements can be used in order to minimize the error.

Table 4.3 shows the results for the 8-node brick elements under the same test conditions.
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Table 4.3: Straight Cantilever Beam for 8 Node Brick Elements.

Tip load direction Displacement in direction of load
Straight Beam 8-Node Brick Percentage
Theoretical Results Difference (%)
Extension (type a) 3.0E-5 2.96E-05 1.47
Extension (type b) 3.0E-5 2.99E-05 0.33
Extension (type ¢) 3.0E-5 2.99E-05 0.50
In Plane Shear (a) 0.1081 1.00E-02 90.71
In Plane Shear (b) 0.1081 2.90E-03 97.32
In Plane Shear (c) 0.1081 3.16E-02 70.77
Out of Plane Shear (a) 0.4321 1.08E-02 97.50
Out of Plane Shear (b) 0.4321 4.86E-03 98.88
Out of Plane Shear (c) 0.4321 5.70E-03 98.68

As seen in Table 4.3, it can be easily seen that the 8-node brick is capable of producing
accurate results for extension tests but not for shear or bending problems. An 8-node brick
consists of linear shape functions, as seen in Chapter 2, which are not capable of reproducing
bending deformations accurately. Thus, under bending or shear conditions a large number of

8-node bricks would be required in order to propetly produce the results.

The figure below shows, how by adding a greater number of 8-node brick elements the
deformation of the beam converges to the analytical simulation. With 1,200 elements the
solution is only 12.85% from the theoretical results compared to 91% difference obtained with

6 elements along the length and 1 element through the height and thickness of the beam.

|Displacerments |
0.094202
0.083733
0.073268

- 0062801

- 0.052334

- 0.041857

% - 0031401

Contour Fill of Displacements, |Displacements| 0.020034
Deformation [ x6.37372). Displacements of Load Analysis, step 1 IU.UlU467
0

Figure 4.5: Shear Simulation with 1,200 8-node brick elements.
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4.3 Flat sheet test

In the flat sheet test the effect of either uniform pressure or concentrated pressue applied to
the thin rectangular plate is calculated. The rectangular plate has dimensions of 2 by 10 by 0.01
meters, as shown in Figure 4.6. The Young’s modulus of elasticity is set to 1.7472 10 with a
Poissons ratio of 0.3. McNeal and Harden modeled 4 of the plate, but it was decided to
model the complete plate in order to simplify the boundary conditions. Two types of support
are applied at the edge of this test, simply supported and clamped. Figure 4.6 shows the model

of the flat rectangular plate with 1 element through the thickness.

Flat rectangular plate.

Figure 4.6: Flat rectangular plate.

Table 4.4 shows the theoretical displacement at the center of the plate under a uniform
pressure or concentrated load. The plate in this problem is set to have either simple or

clamped boundary supports.
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Table 4.4: Displacement at the center of a rectangular plate under uniform
pressure/concentrated load for simple and clamped boundaty conditions.

Boundary Aspect Ratio Displacement at center of plate
Supports b/a 10°
Uniform Concentrated
Pressure Force
Simple 1.0 4.062 11.60
Simple 5.0 12.97 16.96
Clamped 1.0 1.26 5.60
Clamped 5.0 2.56 7.23

Table 4.5 shows the results of this test on an a plate modeled with 8-node brick elements.

Table 4.5: 8-node brick flat plate under a uniform pressure.

Boundary | Aspect Displacement at center of plate 8 Node
Supports Ratio Brick
b/a
Uniform Uniform %
Pressure Pressure Difference
Theoretical
Simple 5.0 12.2910° 278107 97.74%
16X16X1
Clamped 5.0 2.5610° 1.2810° 99.50%
8x8x1
Clamped 5.0 2.5610° 498 10* 98.05%
16x16x1
Clamped 5.0 2.5610° 7.7210* 96.98%
20x20x5

The results presented in Table 4.5 indicate that the 8-node brick, in bending (deformation of a
flat plate), do not converge to the theoretical solution. Thus, in order to be able to solve this
type of problem it is necessary to either add more 8-node brick elements or to use 20-node
brick elements, which can provide better accuracy, as shown in Table 4.6 The small number
indicated under each boundary condition indicate the number of elements along the width,
length and thickness of the plate respectively. Similar results, as those presented in Table 4.5,

have also been shown by McDill [3].
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Figure 4.7 shows the deformed state of the complete plate clamped at the edge with a uniform
pressure. A clamped condition at the edge is performed by fixing the displacement of every
node on the edge of the thin plate to zero in x, y and z. The simple boundary condition means

that no displacement of the edge is allowed in g but is allowed in x and y.
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Figure 4.7: Clamped plate under a uniform pressure.
Table 4.6 shows the results of a flat sheet test with 20-node brick elements. The results indicate
that for an aspect ratio of 5 (aspect ratio defined as the ratio of overal length of the element to
the width of the element) the errors of computational results are all within 3%. This indicates
that 20-node brick elements are capable of simulating problems where bending is involved.

Eight node bricks are also capable, but a lot more elements would be required.

Table 4.6: 20-node brick flat plate under a uniform pressure.

Boundary Aspect Displacement at center of plate 20

Supports | Ratio b/a Node Brick
Note: ‘ Uniform Uniform %
* 4 by 4, 20 node brick per quarter plate. .
#% 8 by 8, 20 node brick per quarter plate. | Pressure Pressure Difference
*% 4 by 4, 20 node brick pet quarter Theoretical 10‘6
plate. 6

10

Simple* 5.0 12.97 13.30 2.54%
Clamped 5.0 2.56 2.53 1.17%
Clamped 5.0 2.56 2.57 -0.39%
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Table 4.7 shows the results of an 8-node brick flat plate under a concentrated load. The results
also indicate that the use of 8-node brick elements, under a concentrated load codition, require
a greater number of 8-node brick elements than presented in Table 4.7 in order to converge to

the theoretical result presented by McNeal and Harden.

Tabel 4.7: 8-node brick flat plate under a concentrated load.

Boundary | Aspect Displacement at center of plate 8 Node
Supports Ratio Brick
b/a
Concentrated | Concentrated %
Load Load Difference
Theoretical
10°
Clamped 5.0 7.23 2.010° 99.72%
4x4x1
Clamped 5.0 7.23 1.17107 98.38%
20x20x6

Similar tests were also conducted on the same flat plate modeled with 20-node brick elements.
The results indicate that if only 4 by 4 elements on V4 of the plate is modeled the obtained
displacemented under simple and clamped boundary conditions can vary from 38 to 63%. As
the number of 20-node brick elements increased the results converged to the theoretical
solution and the approximate percentage difference was only 1 to 3%.

Table 4.8: 20-node brick under a concentrated load.

Boundary | Aspect Displacement at center of plate 20 Node
Supports Ratio Brick
b/a
Concentrated | Concentrated %
Load Load Difference
Theoretical 10°
10°
Simple* 5.0 16.96 10.52 37.97%
Clamped** 5.0 7.23 2.71 62.50%
Clamped*** 5.0 7.23 7.05 2.50%
Simple” 5.0 16.96 16.83 0.77%

*4 by 4, 20 node brick elements on %4 plate.

** 4 by 4, 20 node brick elements on 4 plate.

*#% 30 by 15 by 1, 20 node brick elements on 4 plate
+ 30 by 15 by 1, 20 node brick elements on 4 plate
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The figure below shows a test where a total of 60 by 30 by 1 element through the thickness is
used. The simulation was set under a concentrated load. The results indicate that the value

converges to the theoretical solution (2.5% difference).
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Figure 4.8: Concentrated load on a clamped plate (20-node brick).

4.4 Summary of results for elastic problems

It can be concluded that the patch tests both for 8 and 20-node brick elements converges to
the theoretical results. The straight cantilever beam tests demonstrated the effectiveness of the
20-node brick elements in extension and in and out-of-plane shear and bending. Eight node
brick elements, under the same tests, are only effective in extension problems. Finally the flat
plate sheet problem, under a concentrated or uniform load, confirmed the results obtained for
a straight cantilever beam under bending conditions. The 8-node brick element is very useful

from the point of view of the memory consumption per element, but a larger number of
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elements are required to guarantee convergence to the correct solution. It has also been
demonstrated that when modeling with 8-node brick elements it is recommended to run the
same simulation several times increasing the number of 8-node brick elements to guarantee
mesh convergence. Twenty node brick elements would require fewer elements to converge to
the correct solution but require greater amounts of memory per element to run the same

problem.

4.5 Validation of piezoelectric elements

In the analysis of piezoelectric elements, a standard set of problems, as presented by McNeal
and Harden [1] is not available. Sets of simple problems for which analytical solutions can be
determined are used to validate the performance of 8 and 20-node brick piezoelectric

elements. The results of these validations are shown in this section of the chapter.

The problems that we have simulated for piezoelectric elements are:

® Piezoelectric extension beam

® DPiezoelectric shear beam

® DPiezoelectric biomorphic beam
[ ]

Piezoelectric sensing element problem.
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4.5.1 Piezoelectric extension beam

The piezoelectric extension beam test consists in the extension of a monolithic piezoelectric
beam. This condition is obtained in a piezoelectric beam were the polarization vector (poling
direction) and the electric field are in the same direction. The analytical equation is a function
of the length, the width of the beam, the electric potential difference and the piezoelectric

constant d;,. Figure 4.9 shows the laminar design actuation test.

laminar design (da1 coupling)

A= dglij L
h

Figure 4.9: Laminar actuation [4].

The results of the piezoelectric test are summarized in the table below.

Table 4.9: Piezoelectric extension test for 8-node brick elements.

Tip load direction Displacement
Straight 8-Node Brick Percentage
Beam .
. Results Difference
Theoretical
Extension (type a) 1.026E-5 1.027E-5 -9.74E-2%
Extension (type b) 1.026E-5 1.026E-5 0.0%
Extension (type c) 1.026E-5 1.026E-5 0.0%
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The results of the 8-node brick element show that it is capable of simulating the piezoelectric

actuation extension very accurately. It is also seen from Table 4.9 that the geometry of the

element seems to have little if any influence on the overall extension result. Similarly results for

20-node brick elements are also shown in Table 4.10.

Table 4.10: Piezoelectric extension test 20-Node Brick Elements.

Tip load direction Displacement due to 1000V electric potential
Straight 20-Node Brick Percentage
Beam .
) Results Difference
Theoretical
Extension (type a) 1.026E-5 1.027E-5 -9.74E-2%
Extension (type b) 1.026E-5 1.027E-5 -9.74E-2%
Extension (type ¢) 1.026E-5 1.026E-5 0.0%

4.5.2 Piezoelectric shear beam

The piezoelectric shear beam test, consist in applying the electric field perpendicular to the

polarization direction of the material. The resulting actuation causes the beam to shear

proportional to the electric potential and the d,; piezoelectric constant. Figure 4.10, shows the

deformation a piezoelectric beam under these conditions.

Electrodes

A

v
:
i
i
1
1
i

Figure 4.10: Shear Actuation Test [4].



Table 4.11 shows the results of the beam in shear. The results are very accurate when

compared to the theoretical solution.

Table 4.11: Piezoelectric extension test 8-node brick elements

Tip load direction Displacement due to 1000V
Sggf: ‘ 8-Node Brick Percentage
1 0
Theoretical Results Difference (%o)
Shear (type a) 1.752E-5 1.7523E-5 1.71E-2%
Shear (type b) 1.752E-5 1.7523E-5 1.71E-2%
Shear (type ¢) 1.752E-5 1.7523E-5 1.71E-2%

Similarly, the 20-node brick piezoelectric element results, under the same shear conditions, are

presented in Table 4.12.

Table 4.12: Piezoelectric extension test 20-node brick elements

Tip load direction Displacement due to 1000V
Straight 20-Node Brick Percentage
Beam .
. Results Difference
Theoretical
Shear (type a) 1.752E-5 1.752E-5 0.0%
Shear (type b) 1.752E-5 1.752E-5 0.0%
Shear (type ¢) 1.752E-5 1.752E-5 0.0%

As seen by the results produced, the FEM results with 20-node brick matches the experimental

results perfectly.

4.5.3 Piezoelectric Bimorphic beam

The bimorphic beam test consists of two layers of piezoelectric material polarized in opposite

directions. The bending of the beam is due to the presence of a single electric field through
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both piezoelectric layers. The result is the expansion of one of the layers, while the second one
contracts producing a bending motion on the beam. The analytical equation describing this
type of actuation is proportional to the electric potential difference, the length and the

piezoelectric constant 5, as shown in Figure 4.11.

Eiectfod es

_E(fglr:}Lz.

A= - 7 “\\ Lo
2 h? \‘\ 51’—"

Figure 4.11: Bimorphic actuation beam [4].

The results for both 8 and 20-node brick elements, under a bimorphic beam test conditions,
are presented in Table 4.13. The beam was placed under an electric potential difference of

1,000V.

ElectricPotential

1000
I 888,89
- FFRTE
- BE6.67
- 555,56
- 444,44

- 33333

222,22
11111
u]

Figure 4.12: Bimorphic actuation beam.
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As seen in Table 4.13 the results for a bimorphic beam modeled with 20-node brick elements
are within 1% of the theoretical results. Similar results with 8-node brick elements are within
14% of the theoretical results. The reason is in the inability of 8-node brick elements to
represent bending accurately. In order to avoid this discrepancy in the 8-node brick model a

larger number of 8-node brick elements are required.

Table 4.13: Piezoelectric bimorphic actuation test

Tip load direction Displacement due to a 1000V
Straight Percentage
Beam FEM Results reentag
. Difference
Theoretical
Bimorphic Actuation o
(8—Node brick) LOx15x10 2.57E-05 2.22E-05 -13.45%
Bimorphic Actuation |, 7r g 2 54E-05 -0.97%

(20-Node brick) 15x4x10

Analytical equations on the behavior of bimorphic actuators are described in [5]. The next few

paragraphs present the analytical equations for bimorphic actuation.

The moment of a cantilevered beam consisting of 2 piezoelectric layers fully attached, as

described by Figure 4.12, is presented as:

2 M+M
d ‘;V — _ prezo (4‘3>
dx Y - leq

where,

® M s the moment acting on the beam
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® M, is the moment resulting from the electric field

piezo
® Y is the elastic modulus of the material
® leq is the equivalent moment of inertia
® wis the displacement in z as a function of the length of beam (x).

Assuming that no other moment is applied on the bimorphic cantilevered beam, equation 4.3

can be reduced to:

dzw _ Mpiezo
dx’ Y - leq

(4.4)

2

Solving equation 4.4 for » and assuming that is equal to zero when x is equal to zero we

2
X

obtain:

M iezo 2
w(x)=——"%x (4.5)
Y- leq

Inserting into x the length of the actuator (/), equation 4.5 would provide us with the

maximum deflection:

M iezo 12
w(l) =——"1< (4.6)
Y -leq

The piezoelectric moment assuming that the electric field imposed is such that E, = -E, is:
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M . =-AYd,Eh @.7)

piezo
where,

® Ais the cross sectional area of the beam (base - total height of the beam)

® L, is the electric field applied to top or bottom of the beam from the neutral axis

® his defined as the height from the neutral axis to the top or bottom of the beam.

2
The moment of inertia of the beam is assumed to be quZEbh3, thus the maximum

deflection as a function of the electric field is defined as:

3 I?
W(l)zzdelz (48)

Equation 4.8 is equivalent to that presented in Figure 4.12. In Figure 4.12 the maximum
displacement is defined as function of the electric potential. In Figure 4.12 the height is
considered the full height of the beam while in equation 4.8 it is only half the height of the

beam. Thus, the relation between E; and electtic potential is 2¢/h
4.5.4 Piezoelectric sensing problem
The piezoelectric sensing problem consists of applying a deformation field to an element and

determining if the electric potential produced corresponds to the analytical solution. The
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validation for sensing was only carried out at the element level. In order to validate the sensing
problem a strain value in X, Y and Z were applied to a 2 by 2 by 2 element. The applied strain

vector was set to:

8.55-107°
8.55-107°

—1.87-1077
S = 87-10 (4.9)

The applied strain is shown in Figure 4.13

Original Element

Deformed
element

Ezz-Strain

1860207
-1.8698-07
-1.8601e-07
-1.8691e-07

-1.8692e-07

-1.86028-07

-1.8692e-07

-1.8603e-07

I -1.8603e-07
-1.8604e-07

Contour Fill of Strain on Gp., Ezz-Strain.
Geformation (x777984): Dlisplacements of Load Analysis, step 1

Figure 4.13: Applied strain on the element.

The electric displacement vector (D) is set to zero. Thus, from the electro-mechanical

constitutive equations (stress voltage form) one can compute the electric field as follows:

E=—qe+k, ' D (4.10)

Thus, through equation 4.10 we obtain the electric field to be:
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E=| 0 |= (4.11)
m
528.313

The result obtained by our FEM solver is presented in the figure below:

ElectricPotential

0.0018447
-117.36
A2

+-352.00
f -469.45
| |

-586.81
-704.17

-821.54
I -938.9
-1096.3

Contour Fill of ElectricPotential
Deformation ( x777984): Displacements of Load Analysis, step 1

Figure 4.14: Electric potential in sensing problem.

The FEM solver outputs electric potential. The electric potential is divided by the length of the
element (2) in order to obtain the electric field through the element as: 528.15 V/m vs. a

theoretical value of 528.313 V/m thus a percentage difference of 0.03%.

The same simulation was performed on a 20-node brick element and the results matched the

theoretical value described above.

4.5.5 Summary of results for piezoelectric problems

As seen from the above results it can be concluded that the 8 and 20-node brick piezoelectric

produce the correct results for standard theoretical piezoelectric problems for which the

analytical solution is known.
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Chapter 5

FINITE ELEMENT ANALYSIS OF COMPOSITES WITH PIEZOELECTRIC

FIBERS

5.0 Introduction

In this chapter the results obtained using finite element methods for the analysis of the
behavior of structures with piezoelectric and elastic components will be presented. Many
possible structures, that combine elastic and piezoelectric properties, can be analyzed using
FEM. We have selected the study of piezoelectric fibers, sandwiched in-between an
epoxy/Kapton layers forming an active composite. This type of composite is known as an
Actuated Fiber Composites (AFC). AFC are being developed by several research
organizations such as NASA-Langley Research Center, the Defense Advanced Research
Projects Agency (DARPA) and the Swiss Federal Laboratories for Material Testing and

Research (EMPA), for sensing and actuation applications.

The research presented in this thesis was produced in collaboration with EMPA and a research
group of Prof. F. Nitszche from Catleton University. The primary goal of the author of this
thesis was to develop a finite element solver, which could be used for the analysis and design

of AFC and their applications. The experimental results presented in this thesis were obtained
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by EMPA. The main goal of the collaborative project is to create flexible sensors and
actuators that can adapt to different surface contours for use in such applications as “Smart
Blades” [1]. Such flexibility is impossible to achieve when using bulk piezoelectric ceramics. In
the development of flexible piezoelectric sensors and actuators, design tools capable of
predicting the behavior of piezoelectric structures are required. EMPA has created AFC
specimens and experimentally tested them under different conditions. The AFC structures and

actuation methods were presented and studied in [2-5].

The AFC systems manufactured by EMPA have a thickness of 0.26mm, a length of 31mm,
and a width of 36mm. The AFC specimens have an active area of 31mm in length by 26mm in
width. An active fiber section is the area of the AFC in-between two consecutive electrodes,
thus it is the area of the AFC that contributes to the actuation. The AFC have a total of 76
PZT fibers in the active area of the AFC and are made with the following materials and

components, as seen in Figure 5.1:
® FEpoxy matrix
e DPZT fibers
® Copper electrodes
e Kapton layers

® Glass Fiber Reinforced Plastic (GFRP).
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Figure 5.1: AFC Geometry, all dimensions in mm [6,7].

Figure 5.1 shows the electrode pattern used in EMPA’s AFC. This type of electrode pattern
allows for the poling of the fibers in-situ. AFC systems, as those manufactured by EMPA,
have been modeled and studied using FEM in this work. This type of AFC system, will be

called the unconstrained AFC system.

An AFC where the AFC layer is constrained symmetrically by layers of elastic material (Glass
Fiber Reinforced Polymer GFRP) will be called in this thesis, the constrained AFC model. The
constrained AFC was also manufactured by EMPA. The layer of GFRP that covered the AFC
had a thickness of 260pum, a width of 2150um, and a length of 4600pm. This specimen was

clamped at one end.
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All experimental work was performed by EMPA and we did not make any contribution to the
experimental results. Thus, only a very brief description of the experiment is presented. The
AFC systems were manufactured and tested for actuation and sensing performance. The
actuation experiments consisted of clamping the manufactured AFC at one end, while a
voltage was applied at the IDE in order to induce an extension deformation of the AFC. The
strain was measured indirectly due to the high actuation voltages induced in the AFC. Indirect
measurement of the deformation were mostly performed in order to avoid potentially
damaging the amplifiers that one would typically use to perform the measurements with strain
gauges. The high actuation voltages on the IDE can also affect the strain gauges. EMPA also

performed direct measurements using strain gauges.

A laser was used to measure the resulting extension of the AFC specimens. The measurement
is obtained using a non-contact laser triangulation sensor (LTS). The measurement was done
using a focused laser beam (wavelength 670 nm), which is reflected from the AFC and re-
focused and sensed by a charge-coupled device (CCD). The CCD is a NCDT 2000 model
from Micro-optronic. This device has a measurement range of Z10mm with a resolution of

Ipm. The figure below shows a simplified schematic of the laser triangulation technique [5]:

+

= &

"

N,

Sl

{b) Laser Triangulation

01

(a) Deflection measurement of a
beam with an AFC using laser
triangulation

LabVIEW
<

Figure 5.2: (a) deflection measurement of AFC on beam, (b) laser triangulation schematic [5]
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A laser beam is used to measure the overall displacement produced by the AFC under free
strain and constrained conditions. Figure 5.2 shows the AFC with a laser target. The overall

displacement is measured from which the strain in e is calculated.

GFRP Clamped AFC

area

Figure 5.3: Clamped AFC setup [0].

Figure 5.3 shows the clamped AFC setup, were the laser beam measures the distance that the
AFC extends out. Once the actuation distance of the AFC is measured and knowing the
original (non-actuated) length of the AFC, the strain is computed. The clamped area of the
AFC consists of fixing, by compression, the back end of the AFC to avoid any displacement

of this section.

The sensing tests in which a mechanical strain was applied to the specimens and the electric
response was measured were performed by EMPA [8] and also additional data were obtained
from literature [9]. In [8] the specimens were subjected to a static strain and the changes in
sensing efficiency were measured at different levels of applied static strain by super-imposing

small amplitudes oscillating strain. In [9] the fatigue testing was performed (according to
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ASTM Standards) with the purpose to determine the degradation of sensing actuation

performance of AFC resulting from damaged produced by fatigue.

This thesis presents results of the FEM models of AFC systems as those manufactured by
EMPA. The experimental results provided by EMPA are used for validation of our FEM code

and analysis of other computational models.

This chapter is divided into three sections. The first section covers an introduction and brief
description of the experimental work performed by EMPA. The second section is a
description of the FEM models and results of computer simulations. In particular, the results
of sensing and actuation performance simulation for continuous fiber AFC are shown and
compared to analytical solutions and experimental data. The results of analysis for single layer
AFC and bi-layer AFC-GFRP system are shown. The second section also presents results of
the study of the effects that non-continuous fibers have on AFC performance both in sensing,
extension actuation and shear actuation. Finally, the third section of the chapter covers the
homogenization technique that would be used to develop an element that behaves like an
AFC. The homogenization technique is briefly described as possible future work in order to

improve the capabilities of our solver.

5.1 FEM models of AFC systems

A large number of finite elements are required to model the AFC, as shown in Figure 5.1. Due

to the memory limitation of our solver it was decided to model a section of the AFC and

139



compare the strain values produced by the FEM solver to the experimental strain values
obtained by EMPA. The AFC was modeled using the same design parameters as the AFC
manufactured by EMPA. Almost all the calculations were performed using 8-node brick
elements with tri-linear shape functions [10-12]. For those simulations where the deformation
involved bending of the structure; 20-node brick elements were used. The FEM models will be

individually described next.

511 Unconstrained AFC with continuous fibers

In our FEM simulations we used a model of a section of an AFC with a length of 4600 um, a
width of 1200 pm, and a thickness of 260 pum. The PZT-5A fibers with 250pum diameters were
spaced at 300pum, center to center. It consisted of four piezoelectric fibers, an epoxy matrix,
and copper interdigitized electrodes (IDE) that were covered by a top and bottom layer of
epoxy. Figure 5.4-a shows a view of the FEM model of an AFC specimen with the epoxy
matrix. Figure 5.4-b demonstrates the same AFC with the epoxy matrix made transparent to
show the fibers and the copper electrodes. The IDE manufactured by EMPA are made out of
silver. As it will be shown later in this chapter, the difference in performance in modeling the
AFC with copper versus silver is minimal since the experimental and FEM results match very

closely. The AFC was cantilevered at one end.

The fibers had a varying polarization along their length. The fibers between electrodes E1 and
E2, shown in Figure 5.4-b, have polarization along the positive x direction while the fibers

between electrodes E2 and E3 have polarization along the negative x direction. This permits
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the AFC to extend or contract since the direction of the electric field also changes from one
electrode pair to another. The applied electric potentials cause the regions between the
electrodes to extend because the direction of fiber polarization between each pair of electrodes

coincides with the direction of the electric field between them.

Electrodes _ Polarized in X direction

PZT Polarized in
w Negative X direction

60°

Zero Polarized PEZT
(a) (b) (<)

Figure 5.4: (a) AFC with epoxy matrix, (b) Inner components of AFC, (c) Cross-sectional
view of AFC at the electrodes with a 60° contact angle between the electrode and the PZT
fiber.

The four copper electrodes are spaced at 900 um apart and are 200 um wide and 10 pm thick.
The electrodes in Figure 5.4-b are labeled as E1, E2, E3 and E4. The electric potential for E2
and E4 are set to zero, while E1 and E3 are set to the electric potential of 900, 1350, and 1800
Volts for each simulation run. The copper electrodes make a direct contact with the fibers
through an angle of 60°, as shown in Figure 5.4-c. The fiber under the electrodes was modeled

to have zero polarization.

141



5.1.2 AFC symmetrically constrained by GFRP layers (Constrained AFC) with

continuous fibers

A model, where the AFC layer is constrained symmetrically by layers of elastic material; Glass
Fiber Reinforced Polymer (GFRP) was also analyzed. The upper layer of the AFC in the FEM
model was changed from Epoxy to a Kapton layer as shown in Figure 5.5. In our FEM
simulation of this AFC, the model was also clamped at one end and the electric potentials were

set, as described in Figure 5.5.

Kapton Film
GFRP

Laminate

Copper _
\, Electrodes PZT Fibers
(il
Figure 5.5: GFRP Constrained AFC.
Figure 5.6 shows a cross sectional view of the constrained AFC model.
GFRP Laminate
Kapton Film

Matrix

il Lt PZT Fibers

Figure 5.6: Constrained AFC [7].
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In Figure 5.7-a, the GFRP laminate is hidden to expose the Kapton film. Simulations with and
without the Kapton were carried out, which demonstrate (by comparison of the FEM and
experimental results) the little effect that the Kapton layer has on the overall actuation
performance of the AFC. Figure 5.7-b, shows the same model with a transparent Kapton layer,
in order to visualize the copper electrodes.

Copper Electrodes

Kapton Film Epoxy
‘.' {a) (b)

Figure 5.7: (a) AFC with transparent GFRP layers, (b) Transparent Kapton and GFRP layer
of the constrained AFC.

5.1.3 Unconstrained AFC with broken fibers (actuation tests)

Several models to study the effect of non-continuous fibers were also created. Figure 5.8 shows
models with broken fibers. The non-continuous fiber model consists of small 30 Wm gaps
introduced in the AFC model. The number of gaps varied from one to five to ten and to
twenty. The gaps were introduced in the space between the electrodes, at approximately 450
um from the edge of an electrode (the electrode spacing is 900 um). The gaps were filled with
epoxy matrix. The actuation voltage on the IDE was set to 900V in each case. The spacing
between fibers varied from 300 um to 270 pm in order to maintain a constant volume fraction

of approximately 60%. Simulation runs were conducted for non-continuous fibers under an
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applied voltage that caused extension and shear of the AFC. In all cases, the 8-node brick

piezoelectric elements were used.

Continuous
Polarized Fibers

Figure 5.8: Non-continuous fiber model.

The study on non-continuous fibers also analyzed the effect of depolarization at the gap
interface due to the presence of the gap. The presence of a gap in the fiber has been studied in
[2,3]. In [3] the domain structure in the broken fiber was simulated using a phase field model
developed in [17] for domain structures in ferroelectric materials. The results of these studies
[2,3] indicate that the presence of a gap in the fiber can create depolarized regions that can be
very large compared to the size of the gap. In this thesis we have assumed that the depolarized
region approximates one fiber diameter. Results of the effect of fully polarized and depolarized

fibers with gaps in actuation and sensing conditions are presented in the results section of this

thesis.
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5.1.4 Unconstrained AFC with broken fibers (sensing tests)

A model to study the effect of continuous and non-continuous fibers was also analyzed for
sensing applications. The FEM model of the AFC was 2100 ym by 1200 pm by 243 pm in
size. Two scenarios for sensing were considered. In the first setup, the fibers of the AFC were
polarized along the length of the fiber while in the second setup the fibers of the AFC were
polarized along the diameter of the fiber. The AFC was cantilevered at one end while the
second end was set to an extension of 0.9 um. In the case where the AFC fibers were
polarized along the length of the fiber the electric potential difference was measured along the
fiber length. The AFC that had the fibers polarized along the diameter of the fiber, the electric

potential difference was measured along the diameter of the fiber.

The model of an unconstrained AFC with broken fibers was also used to analyze the
performance of an AFC with broken fibers under an actuation voltage that causes the AFC to

shear.

5.1.5 Bi-layer AFC-GFRP system

Figure 5.9 shows a model of a bi-layer structure consisting of an AFC and GFRP layer. The
AFC was set to have electric potentials that caused the AFC to extend. The extension of the
AFC layer on the GFRP causes the GFRP/AFC structure to bend. The AFC was modeled
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with a length of 4600 pm, a width of 1200 um and a thickness of 260 pm. The GFRP beam
was modeled with the same dimensions as the AFC (260 pm). The Kapton film on the AFC
was modeled with a 10 um thickness. In this model, 20-node brick elements were used. This is
the only model where 20-node brick elements are used because they are more suitable for the
simulation of bending deformation that happens when the AFC layer extends under the effect

of an applied voltage.

Kapton Film

GFRP
Beam

Piezoelectric fibers

Figure 5.9: AFC on GFRP beam.

5.1.6 End Constrained AFC

The final model that was analyzed was of an AFC contracting and pulling on a GFRP section,
as shown in Figure 5.10. In this model both ends were fully fixed as to cause for the GFRP
part of the structure to extend while the AFC contracted due to an applied voltage. The

simulations were conducted with continuous and non-continuous fibers.

Kapton
Layer GFRP

Epoxy

Figure 5.10: AFC pulling on a GFRP section of a beam due to an applied voltage.
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The material properties for each material used for all of the above models are described in

Tables 5.1, 5.2 and 5.3.

Table 5.1: Material properties for PZT-5A and epoxy [0].

PZT-5A Properties Epoxy Properties
PERMITIVITY (F/m) p11 8.137E-9 | PERMITIVITY (F/m) p11 3.542E-11
PERMITIVITY (F/m) p22 8.137E-9 | PERMITIVITY (F/m) p22 3.542E-11
PERMITIVITY (F/m) p33 7319E-9 | PERMITIVITY (F/m) p33 3.542E-11
PIEZOELEC COUPLING (sAm™- -0.395 PIEZOELEC COUPLING (sAm™- 0.0
2) d31 2) d31
PIEZOELEC COUPLING (sAm™- -0.395 PIEZOELEC COUPLING (sAm”- 0.0
2)_d32 2)_d32
PIEZOELEC_COUPLING_(sAm”™- 23.101 PIEZOELEC_COUPLING_(sAm”™- 0.0
2)_d33 2)_d33
PIEZOELEC COUPLING (sAm”™- 12.295 PIEZOELEC COUPLING (sAm”™- 0.0
2) do4 2) do4
PIEZOELEC COUPLING (sAm”™- 12.295 PIEZOELEC COUPLING (sAm”™- 0.0
2)d15 2)d15
STIFENESS Q11 (N/m"2) 1.203E11 | STIFENESS Q11 (N/m"2) 6.52E9
STIFENESS Q12 (N/m"2) 7518E10 | STIFFNESS Q12 (N/m™2) 3.98E9
STIFENESS Q13 (N/m"2) 7509E10 | STIFFNESS Q13 (N/m™2) 3.98E9
STIFFNESS Q21 (N/m"2) 7.518E10 | STIFFNESS Q21 (N/m"2) 3.98E9
STIFFNESS Q22 (N/m"2) 1.203E11 STIFFNESS Q22 (N/m"2) 6.52E9
STIFFNESS Q23 (N/m"2) 7.509E10 | STIFFNESS Q23 (N/m"2) 3.98E9
STIFFNESS Q31 (N/m"2) 7.509E10 | STIFFNESS Q31 (N/m"2) 3.98E9
STIFFNESS Q32 (N/m"2) 7.509E10 | STIFFNESS Q32 (N/m"2) 3.98E9
STIFFNESS Q33 (N/m"2) 1.109E11 | STIFFNESS Q33 (N/m"2) 6.52E9
STIFFNESS Q44 (N/m"2) 2.105E10 | STIFFNESS Q44 (N/m"2) 1.27E9
STIFFNESS Q55 (N/m"2) 2.105E10 | STIFFNESS Q55 (N/m"2) 1.27E9
STIFFNESS Q66 (N/m"2) 2.257E10 | STIFFNESS Q66 (N/m"2) 1.27E9
POLARIZATION(X=1,Y=2,2=3) 1or2o0r3 | POLARIZATION(X=1,Y=2,2=3) lor2or3

Negatively polarized fiber sections have the same value of piezoelectric constant as the PZT-
5A presented in Table 5.1, with the only difference being that negative one multiplies the
values for piezoelectric constants. In the case of the zero polarized PZT-5A, the piezoelectric

coupling values are set to zero.
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Table 5.2 contains the material properties used for the Kapton film and for the inter-digitized

copper electrodes.

Table 5.2: Material properties for copper and negative polarized PZT-5A [13].

Kapton Film Copper
PERMITIVITY (F/m) pl1 301E-11 | PERMITIVITY (F/m) pl1 1.603E-10
PERMITIVITY (F/m) p22 301E-11 | PERMITIVITY (F/m) p22 1.603E-10
PERMITIVITY (F/m) p33 301E-11 | PERMITIVITY (F/m) p33 1.603E-10
PIEZOELEC COUPLING (sAm™-2) 0 PIEZOELEC COUPLING (sAm™-2) 0
d31 d31
PIEZOELEC COUPLING (sAm™- 0 PIEZOELEC COUPLING (sAm™- 0
2)_d32 2)_d32
PIEZOELEC_COUPLING_(sAm™- 0 PIEZOELEC_COUPLING_(sAm"- 0
2)_d33 2)_d33
PIEZOELEC COUPLING (sAm”-2) 0 PIEZOELEC COUPLING (sAm”-2) 0
d24 d24
PIEZOELEC COUPLING (sAm™-2) 0 PIEZOELEC COUPLING (sAm™-2) 0
d15 d15
STIFFNESS Q11 (N/m"2) 3.848E9 | STIFENESS Q11 (N/m"2) 1.801E11
STIFFNESS Q12 (N/m"2) 1.982E9 | STIFFNESS Q12 (N/m"2) 9.277E10
STIFFNESS Q13 (N/m"2) 1982E9 | STIFENESS Q13 (N/m"2) 9.277E10
STIFENESS Q21 (N/m"2) 1.982E9 | STIFENESS Q21 (N/m"2) 9.277E10
STIFFNESS Q22 (N/m"2) 3.848E9 | STIFENESS Q22 (N/m"2) 1.801E11
STIFFNESS Q23 (N/m"2) 1982E9 | STIFENESS Q23 (N/m"2) 9.277E10
STIFFNESS Q31 (N/m"2) 1982E9 | STIFENESS Q31 (N/m"2) 9.277E10
STIFFNESS Q32 (N/m"2) 1.982E9 | STIFFNESS Q32 (N/m"2) 9.277E10
STIFFNESS Q33 (N/m"2) 3.848E9 | STIFENESS Q33 (N/m"2) 1.801E11
STIFFNESS Q44 (N/m"2) 9.328E8 STIFFNESS Q44 (N/m"2) 4.366E10
STIFFNESS Q55 (N/m"2) 9.328E8 STIFFNESS Q55 (N/m"2) 4.366E10
STIFFNESS Q66 (N/m"2) 9.328E8 | STIFENESS Q66 (N/m"2) 4366E10
POLARIZATION(X=1,Y=2,Z=3) lor2or3 | POLARIZATION(X=1Y=2,7=3) lor2or3

Table 5.3 shows the material properties used for modeling the GFRP beam.

Table 5.3: Material properties for GFRP [6].
GFRP

PERMITIVITY (F/m) pl1 6.375E-11
PERMITIVITY (F/m) p22 6.375E-11
PERMITIVITY (F/m) p33 6.375E-11
All PIEZOELEC COUPLING 0.0
(sAm™-2)

STIFFNESS Q11 (N/m"2) 4.109E10
STIFFNESS Q12 (N/m"2) 2.212E10
STIFFNESS Q13 (N/m"2) 2.212E10
STIFFNESS Q21 (N/m"2) 2.212E10
STIFFNESS Q22 (N/m"2) 4.109E10
STIFFNESS Q23 (N/m"2) 2.212E10
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Table 5.3-Continuation: Material properties for GFRP [0].
STIFFNESS Q31 (N/m”™2) 2.212E10
STIFFNESS Q32 (N/m"2) 2.212E10
STIFFNESS Q33 (N/m"2) 4.109E10
STIFFNESS Q44 (N/m"™2) 9.481E9
STIFFNESS Q55 (N/m”™2) 9.481E9
STIFFNESS Q66 (N/m"2) 9.481E9
POLARIZATION(X=1,Y=2,72=3) lor2or3

5.2 Results

This section summarizes the results obtained from all simulations of AFC systems. The section

is divided into the following parts:

® Unconstrained AFC with continuous fibers

® AFC symmetrically constrained by GFRP layers (Constrained AFC) with continuous fibers

¢ Unconstrained AFC with broken fibers (actuation tests)

® Unconstrained AFC with broken fibers (sensing tests)

e Bilayer AFC-GFRP System

o FEnd Constrained AFC

® Analytical model for the deformation of bi-layer system.
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5.21 Unconstrained AFC with continuous fibers

The figure below shows the original and extended AFC, where the epoxy has been hidden in

otder to see the deformation of the fibers.

The grey fiber are the original position of
the fibers and electrodes

This portion represents the
extended mesh of the fiber and
electrodes

[ Defarmation {397 9213 Displacements of Load Analysis, step 1. | [mﬂ

Figure 5.11: Extended fiber and electrode (deformation not to scale).

The finite element simulation of the AFC showed an extension of 1.37 um obtained in the
model with 4 active sections. An active section is the space between two consecutive electrodes
along the fiber length. The actual EMPA AFC has 28 active sections, which according to the

FEM model, would produce an extension of 9.59 pum.

Figure 5.12 shows the distribution of the electric potential in an unconstrained AFC with 900

volts applied to the IDE.

ElectricPotential

902.94
s02.62
702.29

60195
- 501.64
-401.31
- 300,98

L 200,65
I 100.33
o

Figure 5.12: Electric potential of unconstrained AFC.
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Figure 5.13 shows the longitudinal strain, ¢, in the AFC calculated by the FEM solver.

Exx Strain
0.00042671
0.00037371
0.0003207

- 0.00026759
- 0.000Z21468
- 0.00016168
- 0,00010367
L 5.5664e-05
I 2.6535%-05

-5.03%e-05

Figure 5.13: Computed strain field on unconstrained AFC.

Table 5.4 shows the average strain computed by the FEM solver and the experimentally
measured values. The difference between the strain values computed by the FEM solver and
the measured strains are within 5% at higher voltages and better than 5% at lower voltages. At
higher voltages the non-linearity in the material started affecting the strain and the overall
actuation of the fibers. Although the FEM solver is a linear solver, simulations were run at
different voltages in order to compare the experimental results. Thus, at higher voltages the
percentage difference between the FEM and experimental strain values increased. It is also
important to note that the models in this simulation replaced the Kapton layer with an epoxy
layer and the results between experimental and FEM are still very close. This indicates that the
Kapton layer does not significantly affect the performance of the AFC.

Table 5.4: ¢ strain values computed by the FEM solver and e strain values measured at
EMPA for an AFC under free strain conditions.

Applied Voltage | Eyy strain produced | Eyy strain measured | Difference,
(Volts) by FEM Solver EMPA %
Experimental
900 0.0004088 0.00041 0.29%
1350 0.0006135 0.00064 4.14%
1800 0.0008170 0.00086 5.00%
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5.2.2 AFC symmetrically constrained by GFRP layers (Constrained AFC) with

continuous fibers

Figure 5.14 shows the distribution of electric potentials in GFRP and epoxy layers obtained

when actuation voltage was applied to the IDE.

e ctricPotential
o 00142
801.26
7011
- 600.95

500,79
|

 300.47

200,32
100.16
0

Yy
‘X Contour Fill of ElectricPotential [mﬂ

DCeformation ( x1079.29): Displacements of Load Analysis, step 1

Figure 5.14: Electric potential through the constrained AFC.

The simulations for constrained AFC were performed using 900, 1800, and 2250 Volts
actuation potentials. The experimental strain e values are computed from the measured
displacement. The strain values e are shown in the Figure 5.15. The average value of ¢ on

the surface of the GFRP is approximately 0.00010 at 900 Volts.
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Figure 5.15: Strain, e in the constrained AFC at 900Volts.

The table below shows a summary of the experimental and FEM results.

Table 5.5: Summary of strain for EMPA's constrained AFC.

Voltage Applied Strain e Strain e, FEM. % Difference
(Volts) Experimental
900 0.00010 0.00010 0.00%
1800 0.00019 0.00020 5.26%
2250 0.00023 0.00022 4.54%

5.2.3 Unconstrained AFC with broken fibers (actuation tests)

The introduction of gaps in fibers in the AFC produces a strong effect on the distribution of
electric field. This effect causes a change in the performance of the AFC. The figure below
shows the electric potential in AFC with continuous fibers (Fig. 5.16-a) and with five 30 um
gaps (Fig. 5.16-b). As seen in Figure 5.16-b, the fibers with gaps create a large electric potential

difference in the proximity of the gap, creating a capacitor effect in the gap. The region of
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polarized fiber between the electrode and the gap has small electric potential difference, thus

eliminating the contribution in extension or contraction for that active area of the AFC.

ElectricPatential

902.94
802.62
702,29

- 601.96
- 501.64
- 401.31
- 300.98

E 200,65
S IlDD.BS

1)

(a) Tantaur FIlT of ElectiicFotential
Daformation (348.205): Displacements of Load Analysis, step 1

ElectricPotential
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842,21
729.15

- 616,09
- 503.03
* 389.95

F 276.9
163.84
I 50.777
-62.285

S
Figure 5.16: (a) Electric potential on AFC with continuous fibers. (b) Shows the electric
potential on an AFC with 5 random 30 um gaps along the fiber length.

Several simulations were carried out in order to determine the effect of non-continuous fibers
on the extension actuation of the AFC. Figure 5.17 shows that the application of an electric
field on an unconstrained AFC with discontinuous fibers demonstrates that the loss of

displacement for every non-continuous fiber is significant and almost linear.

The introduction of gaps in the fibers of the FEM model presented two possible cases. The
first case was to look at the effect in actuation and sensing performance of the AFC due to the
presence of a gap in the fibers of the AFC, neglecting the depolarization region created by the

gap. The second case consisted in simulating the depolarization region at the interfaces of each

gap-
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The additional effect of a depolarized section of the fiber at the gap interface has little or no
effect on the actuation performance of the AFC. This is assuming that the depolarized region

at the gap interface is approximately one fiber diameter.
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Figure 5.17: The simulated actuation displacement, obtained in an AFC with discontinuous
fibers shown as a percentage of displacement obtained in an AFC with continuous fibers, vs.
number of gaps.

5.2.4 Unconstrained AFC with broken fibers (sensing tests)

A similar set of simulations for sensing applications of the AFC was also conducted. Figure
5.18 shows the effect of non-continuous fibers on the sensing performance of AFC. The AFC
was cantilevered at one end while a displacement of 0.9 um was applied to the opposite end.
The voltage across the fiber diameter was obtained from the simulation. The fibers for this
simulation were poled through the diameter of the fiber. Figure 5.18 indicates that for a small

number of discontinuities (long fiber limit), the expected effect of the loss in sensing is not
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significant. A slight increase in the voltage difference between 0 and 5 gaps is due to numerical
error. In the case of a large number of discontinuities (short fiber AFC) the sensing

performance decreases rapidly with the increase in the number of gaps in fibers.

80

75
70 \
65
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Volts
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Number of Gaps

Figure 5.18: Simulated effect of non-continuous fully polarized fibers on the voltage produced
by an AFC under applied deformation.

The effect of depolarization of the fiber near the gap is significant for sensing applications as

seen in Figure 5.19-a. The results obtained in the sensing simulation indicate that the difference

of electric potentials between the top and bottom surfaces of the AFC, in the proximity of the

gap, drastically differs from the electric potential differences in other regions of the AFC.
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Figure 5.19: (a) AFC under an applied strain (b) AFC x-section near the gap.

Figure 5.19b shows a x-section of the AFC near the gap. As seen in this figure the electric
potential difference near the gap is close to zero. This is a major point of concern since
discontinuities in AFC tend to appear in the proximity of the electrodes. The electrodes would
then sense an electric potential that is substantially less than the actual electric potential of the
AFC. This would tend to indicate the need for dual electrode systems in sensing AFC. The
first electrode group may be used for the creation of the polarization field through the
piezoelectric fibers, while the second electrode would serve to monitor the electric potential
distribution on the AFC under a specific strain condition. This second electrode group can
then be compared to the first electrode group as a means of verification of the reading. Thus,
the reliability of the piezoelectric AFC sensor could be validated and in the overall

performance tracked for degradation.

Simulations where the polarization was set along the length of the fiber were also conducted.

The simulations were carried out for an AFC with 1, and 2 gaps in the model. Figure 5-20 and

157



5-21 show the electric field on an AFC due to an applied strain for fibers with polarized and
depolarized regions near the gaps and under the electrodes. As seen in these figures, the fibers
that have a gap show a drop in the electric potential difference in comparison to the continuous

fibers of the AFC for both fully polarized and depolarized regions in the fibers.

Fully pelarized fibers
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Figure 5.20: (a) AFC under an applied strain with fully polarized along the fiber length and 1
broken fiber. (b) AFC under an applied strain fully polarized along the fiber length and 1
broken fiber with a transparent epoxy matrix.
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Figure 5.21: (a) AFC with 2 broken fibers and with depolarized regions at the gap interfaces
with a transparent epoxy (b) AFC with 2 broken fibers and with depolarized region at the gap
interfaces with the epoxy.

Table 5.6 shows the voltage difference along the broken and continuous fibers along the AFC
for both polarized and depolarized regions in the fibers. In the case of the depolarized regions
in the fibers the assumption that is made is that the depolarized region is one fiber diameter on
each side of the gap interface. As seen in Table 5.6 for the fully polarized fibers with gaps, the
voltage difference from opposite ends of the fiber decreases as the number of gaps are
introduced into the system. It is also important to note that the difference between two fibers

that have the same number of gaps is very similar (within 30 volts).
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Table 5.6: Voltage difference along the AFC for piezoelectric fibers poled along the fiber
length for polarized and depolarized fibers.

Polarized regions | Depolarized regions in | Voltage difference

in fibers along the | fibers along the length between polarized
length of the fiber of the fiber &depolarized regions

No. of Gaps Voltage difference Voltage difference Voltage

0+ 2839.0 2789.0 50.0
0++ 2832.0 2779.0 53.0
1 2442.0 2022.1 419.9
2 (1" broken fiber) 2362.6 1884.8 4778
2 (2™ broken fiber) 2358.0 19135 4445

+ Voltage on a continuous fiber in an AFC with 1 broken fiber
++ Voltage on a continuous fiber in an AFC with 2 broken fibers

The third column in Table 5.6, indicates the voltage difference for those fibers that have a
depolarized regions on each side of the gap. The voltage difference for the fibers with
depolarized regions is consistently lower than for fibers, which contain only gaps without
depolarized regions. The comparison of continuous fibers in the AFC containing fibers with
gaps with depolarized regions and continuous fibers in the AFC containing gaps in fibers
without accompanying depolarized regions, demonstrates that the former produces a smaller
voltage by approximately 50 Volts. For fibers containing gaps the introduction of depolarized
region results in the decrease in the voltage by approximately 420 Volts (the presence of the
gap itself without depolarized region reduces voltage by approximately 400 Volts compared to
a continuous fiber). An addition of a second gap into the AFC results in the further decrease of
the voltage in the broken fibers by 80 Volts in the system without depolarized regions and by
140 Volts in the system with gaps in fibers accompanied by depolarized regions. These results
indicate that the voltage loss, due to the presence of a gap, and the depolarized region at the
interfaces of the gap in sensing applications can be significant. These results also indicate that

for the analysis of the effect of damage in fibers on sensing performance it is important to take
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into account the actual size of gaps in fibers and possible existence of regions with changed

polarization.

5.2.5 Unconstrained AFC with broken fibers model under shear actuation

The shear actuation simulations were run on the FEM model of an unconstrained AFC with
broken fibers which was also used for the simulation of sensing tests (Section 5.2.4). The
electric potential was set to 1,000V along the complete top surface of the AFC and 0V along
the bottom surface. The top and bottom layers of the AFC were set to be of Kapton material.

Figure 5.22 shows a render picture of the AFC.

One thousand
Volts

/

2ero Volts

I KAPTON_DUPONT_1868_HH
O EPOXY_EMPA
W PZT5A-Empa

Figure 5.22: Applied electric potential on AFC for shear actuation.

Under shear deformation the IDE was not modeled and the complete upper and lower

Kapton layers of the AFC were assigned electric potentials of 1,000V and OV respectively. This
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creates an electric field through the fiber that causes a shear deformation of the AFC. The

fibers were set to have a polarization vector along the fiber length.

Figure 5.23 show the displacement field of an AFC with continuous fiber under the applied

voltage.
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Figure 5.23: AFC displacement field, deformed in shear due to an electric field across the
fiber diameter.
Figure 5.24 shows the percentage difference in shear actuation for an AFC that has no gaps to
an AFC that has up to 20 gaps. In this case the simulations were carried out for fibers with
tully polarized regions. As seen in Figure 5.24, the loss of performance due to the presence of
gaps 1s not significant in comparison to the effect in extension actuation and sensing tests. This
is due to the fact that the electric field is through the fiber diameter and not along the length of
the fibet, as in the case of the extension model described above. Thus, shear actuation is more

“forgiving” when non-continuous fibers are used.
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Figure 5.24: Shear deformation displacement vs. gap fiber presence along the fiber length.

5.2.6 Bi-layer AFC-GFRP system

The focus of this simulation is to demonstrate the effect of the extension of an AFC on GFRP
beam. This simulation was carried out with 20-node brick elements. The figure below shows
the bending effect of the beam. Twenty node brick elements were used in order to avoid the
locking effect of 8-node brick under bending conditions. The use of 8-node brick would
require a greater number of elements than the one allowed by our FEM solver as was

demonstrated in Chapter 4.

Figure 5.25 shows the displacement field in bending due to the extension of an AFC on a

GFRP beam of similar thickness.

163



|Displacements |
1.0241e-05
9.1032e-06
7.9653e-06
- 6.8274e-06
- 5.6895e-05
 4.5516e-06

- 3.4137e-06
2.2738e-06
I 1.1379e-08
| Contour Fill of Displacements, |Displacements| v I
Deformation (.6528): Displacements of Load fnalysis, step 1 | " |

Figure 5.25: Displacement field of AFC on a GFRP beam at a 900V.

Figure 5.26 shows the applied voltage in order to obtain the bending of the beam.
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Figure 5.26: AFC on a GFRP at 900V electric potential field.

Figure 5.27 shows the strain e produced due to the bending of the structure.
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Figure 5.27: Strain, ¢ of AFC on beam.

5.2.7 Analytical model for the deformation of bi-layer system

The following section describes the analytical equations for the bi-layer AFC-GFRP specimen
[5]. The basis of this theory consists of describing the bending of a lamella when a voltage is
applied to the AFC. The AFC is assumed to be perfectly adhered to the lamella as shown in
Figure 5.28. The analytical model assumes an isotropic elastic beam (since we have modeled a
GFRP plate we are assuming the homogenized version of the composite). The third
assumption is that the strain distribution in the AFC is linear and has a constant slope. It is

also assumed that both the AFC and the lamella are thin and finally that the piezoelectric

material constant d,; is much greater than d;
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Figure 5.28: AFC on a lamella [5].

The stress/strain state in the lamella is desctibed by equation 5.1 and 5.2:

£, =Cz (.1)

where,

e (is obtained by multiplying the overall lamella stiffness with the AFC strain

® zis the coordinate direction through the AFC and lamella.

N (6 (.2)

where,

® Yis the Young’s Modulus of Elasticity of the lamella.
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Similarly, the piezoelectric longitudinal strain (unconstrained) in the AFC is given by equation

53 and 5.4

g =B e (5.3)

where,
® U, describes the voltage at the electrodes of the AFC

® D, is the piezoelectric constant of the piezoelectric fibers

® ¢ is the inter-digitized spacing
The stress of the actuator is:

O-a(z) = Ya ’ (CZ - ga) (54)

where C, is defined by equation 5.6.

The Moment of equilibrium at the center of the beam is provided by equation 5.5:

h h+h,
IO'(Z)zdz + IGQ(Z)zdz =0 (5.5)
—h h
From equation 5.5, C can be found as:
C=K,e, (5.6)
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where,

2
%YYahhj + [16;/]}14 +;th;‘ + iYYtha

f:(zhhha+h2]' YA s, . 4 3 N
a0 “6 +—Y°h"+_YY (4h°h, +3h"h; + hh,
where,
® ) is the height of the lamella
® ), is the height of the AFC
® Y is the homogenized Young’s modulus of the AFC.
The piezoelectric moment M, induced into the Beam by the AFC is calculated as:
M, =YIK ¢, (5.8)
Where
e Tis the moment of inertia bh’/12.
The displacements and strains in the beam are given by the following equations:
[u(z)]=[—zg—;v _Zg_vyv WT (5.9)
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o°w °w 2w |
E|=]—z2 -2z 27 5.10
[ (Z)] |: axz ayz axay ( )
Where,
® yis the flexural displacement.

The internal beam bending moment is calculated using equation 5.11:

2w

ox?

M, =[o.dz=-VI (5.11)

The boundary conditions are set by equation 5.12, due to the clamped end shown in Figure

5.28:

w(0)=0

(B_WJ o (5.12)
ox J,

The flexural displacement is obtained from equation 5.8, 5.11 and 5.12. The flexural
displacement as a function of x (coordinate along the length of the lamella) is:
-K, £, x’

w(x) = 5 (5.13)

Figure 5.29 shows the constant slope that the lamella would take in this theoretical model past

the AFC length. The flexural displacement of the lamella would be of the form of:

w(x)=Ax+B (5.14)
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where A4 is defined as:

(a—wj =-K,e,L,=A
ox ),

and B is defined as:
B = Wa _ALa = Wa _ngaLft

Thus, the maximum deflection of the beam would be given by equation 5.17

Woue =K, —€,L,L+w, - KfeaLi

Figure 5.29: Maximum deflection of an AFC on a Lamella [5].

h J

(5.15)

(5.16)

(5.17)

Winax

The w,,,. obtained by our FEM solver on the Bi-layer AFC-GFRP System, with respect to the

analytical equations described above, show an error of 17%. This error is mostly due to the

assumptions that the strain distribution in the AFC is linear and has a constant slope, which

cleatly it is not, as seen in the FEM model.
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5.2.8 End constrained AFC

A set of simulation runs that caused the AFC to contract under the influence of an electric
potential, pulling on a section of GFRP were performed. The simulation consisted in having a
cantilevered AFC contract due to an applied electric voltage attached to a section of GFRP
that was also cantilevered. As the AFC contracted due to the applied voltage it caused a pull on
the GFRP section of the beam. The potential of GFRP section of the structure was set to zero
volts. The results of these simulations are presented next. Figure 5.30 shows the application of

the electric potential on the AFC.
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Figure 5.30: AFC pulling on GFRP X-Section.

The polarization of the fibers was set, as shown in Figure 5.4. The electric potential was started
with electrode E7 set to OV instead of 900V. The result of this change in voltage is a
contraction effect on the AFC (the polarization vector remained the same as shown in Figure
5.4). Both ends of the AFC were set to zero displacement in all directions. The displacement at

the interface of the AFC and the GFRP section was analyzed. The value of displacement at
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this interface was taken at the fiber and not at the epoxy layer. The results on displacement are

show in the figure 5.31.
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Figure 5.31: Displacement field on the deformed mesh.

The displacement field taken at the fiber interface with the GFRP, was obtained from the
results provided by the solver. The result of displacement as a function of the number of gaps
was graphed in the figure below. As seen Figure 5.32, it can be concluded that the effect of a
single gap in the fiber has little degradation effect on the ability of the AFC to contract and
pull on the GFRP cross section. As the number of gaps in the fiber increases in the model the

strain/displacement dropped lineatly between 1 and 10 gaps.
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Figure 5.32: Effect of non-continuous fibers on displacement of the GFRP beam section.

5.3 AFC homogenization

The analysis of piezoelectric fiber composites in a large system requires the use of finite
elements that have the same average properties as the AFC. None of our simulations make use
of this type of element. In our simulations every fiber was modeled in detail. This provides a
limitation on the number of fibers that can be modeled due to the memory consumption in
solving large AFC systems. In order to develop 8 and 20-node brick elements with the same
properties as an AFC, a represented volume element (RVE) as the one shown in Figure 5.33
can be modeled. The RVE is presented in this thesis as future work that can be performed to

optimize the capabilities of our solver.
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The RVE consists in a unit cell of the structure that is being considered. For every type of
AFC an RVE would be required, since any change in the fiber diameter will have an impact on

the volume fraction of the AFC. Changes in volume fraction have an effect on the effective

Figure 5.33: RVE of an AFC [14].

material coefficients calculated.

Table 5.7: Shows boundary conditions applied to the RVE in order to compute the effective
material properties of the AFC unit cell. [14].

Constant | Forces Electrical Calculation | Electrodes
Direction | Field direction
SE off 1 S,/T,
SE off 2 S,/ T,
SE off 3 S,/T,
SE off 3 S,/ T,
SE off 3 S,/T,
SE off 1 Se/ T
d31eﬁ' 3 S,/E, AN
d33eﬁ‘ 3 S,/E, AN
dlseff 3 D,/T;
el off 1 D,/E, B, B
g;eﬁ' 3 D,/E, AN
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In order to determine the effective material property for an AFC, a series of finite element
simulations on the unit cell model are required. The boundary conditions for each simulation

on the unit cell are found in Table 5.7. In Table 5.7, S represents the strain, T the stress, D,
the electric displacement and E, the electric field in the RVE. § ieﬁl represents the effective

clastic constants, d the effective piezoelectric constant and €7 the effective permittivity

constant.

In order to compute the Sﬁeﬂ a force in the direction of 1 is applied to the unit cell (Figure

5.33). The stress is calculated by dividing the force applied by the surface area of the plane

normal to coordinate direction 1. The overall displacement is obtained from the FE solver.

The value of § ﬁeﬁl in the 1 direction can be computed by dividing the overall strain in 1 by the

overall stress in 1. 'The calculation column in Table 5.7 indicates that the calculation

performed (S,/T,) in order to obtain the S; " constant with a constant electric field (E).

As the volume fraction of the RVE is decreased the effective material properties computed
approximates that of the epoxy, while as the volume fraction of the fiber (PZT-5A) increases
the effective material properties approach that of the fiber material (PZT-5A). A similar

approach is used in order to obtain the other material properties.

The method described above is an effective method for obtaining all effective constants for a
represented volume element. This method requires the use of FEM to obtain the effective
properties. Analytical equations presented in [15,16] provide the equations to calculate the

relationship between the effective properties of the piezoelectric composites by means of the
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fiber volume fraction and material properties. The use of analytical equations in [15,16] does
not allow obtaining every effective property, but it is a simpler means of obtaining some of the

effective properties of the AFC element.
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Chapter 6

DISCUSSION AND CONCLUSIONS

6.0 Discussion and Conclusions

The FEM solver for the analysis of structures with piezoelectric components has been
developed. The solver was tested for elastic and piezeolectric problems and very good
agreement between the numerical solutions produced by the solver and analytical results was
demonstrated. For elastic problems the relevant tests from MacNeal and Harden test set [4]
were used. The validation of the solver for piezoelectric problems was performed using simple
systems for which analytical solutions are available [5, 60]. The results of the elastic tests indicate
that while 8-node brick elements can provide a good accuracy in simple extension tests, but
they are not efficient for the solution of the problems in which deformation produces any
significant curvature effect. For example, a simple bending test demonstrated that we need
1,200 8-node brick elements to approach a resonable level of accuracy (error within 13%)
while just 6 20-node brick elements provided a very accurate solution (error within 3%). These
results agree with literature [7]. Even though that 20-node bricks require more resources per
element, they can be more efficient for the solution of problems where deformation produces
significant curvature. From these results it can be concluded that it is better to use 20-node
brick elements whenever possible and that when using 8-node brick elements it is necessary to

add sufficient 8-node brick elements in order to guarantee mesh convergence. In other words
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a mesh convergence test when using 8-node brick elements is required in order to feel

confident with the obtained solution.

The FEM solver was also validated using experimental results obtained for Actuated Fibre
Composites (AFC) by Swiss Federal Laboratories for Materials Testing and Research
(EMPA). The very good agreement between experimental results and simulation results for
actuation tests was obtained [1,2]. Problems with non-linearity at high voltages were shown,
due to the non-linear behaviour of piezoelectric materials at high electric fields [3]. In order to
represent accurately these non-linearities a non-linear solver is required. The AFC strains
obtained under the applied voltages in experiments with both free AFC and AFC constrained
in AFC-GFRP symmetrical laminate are very close to the computed strain values produced by
our solver. All of the results agreed within 5% of experimental results for different actuation
voltages. In the case where the actuation voltage (10 kV/cm) was lower, the results were
within 1% of the experimental value. The higher errors at higher voltages (20kV/cm) can be
attributed to the non-linear behavior of piezoelectric materials, as described in [3]. Thus, it was
shown that the developed FEM solver could be used to model the actuation performance of

AFC for both constrained (laminated) and un-constrained systems.

The structure with AFC applied as an actuator to the surface of elastic beam was also simulated
and obtained results were compared to analytical solution [5,9]. The results indicate a difference
of approximately 17% between the analytical and FEM models. It is necessary to note that in
the analytical model the number of simplifications made (the AFC is replaced by the
homogeneous piezoelectric material and piezoelectric constants of this effective replacement
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are approximated by the corresponding values of the AFC fiber materials and are not obtained
through the proper analysis of the representative volume element) and the analytical results
themselves are only approximate. The use of AFC as actuators applied to elastic beams is
currently being researched for rotor blade applications being developed with the purpose of the

control of the blade vortex interaction phenomena common in helicopters [8,9].

Analysis of the effect of discontinuities in fibers on the performance of AFC systems was
performed using our FEM solver. The results demonstrate that the transition from a
continuous fiber AFC (or long fiber AFC) to a short fiber AFC can result in a significant
degradation of both the actuation and sensing capabilities when AFC operates in the extension
mode. In particular, such degradation can be the result of the fiber damage produced by the
excessive mechanical deformation of AFC. Experimental results show that mechanical straining
of AFC results in a large decrease in the sensing performance [10]. The range of degradation
values obtained in these experiments is the same as the one obtained in our simulations for
AFC with different number of fibers in the systems. The maximum degradation of about 80%
was obtained experimentally. It is necessary to note that our simulations indicate that such
degradation can be obtained from the gaps in fibers only when a very large number of gaps is
formed and material is effectively transformed into short fiber composite. It is unlikely that
such severe damage can be achieved without producing an overall failure of composite. Thus, it
is possible to suggest that some additional mechanisms (other than just formation of gaps in
fibers, such as for example the change of the polarization state in fibers near the gaps) can

provide contributions into the degradation of the AFC performance.
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It is possible that the formation of gaps is accompanied by local changes to the polarization
state resulting from the depolarizing field near the gap and the strain effect on the domain
structure. Such changes of polarization can attenuate the degradation of performance produced
by the defects in fibers. The FEM analysis was performed for AFC with broken fibers
depolarized regions near the gaps in the fibers. It was assumed that the length of such
depolarized regions is equal to one fiber diameter at each side of the gap. Our simulations
demonstrate that when AFC is used as an actuator in the extension mode the addition of
depolarized region to gaps in fibers produces almost no change in the performance of AFC.
We observed that once the gap is formed in the fiber the whole length of the fiber between to
adjacent electrodes is effectively switched off and any further changes in this section of the
fiber produce very little or no effect. In case of the sensing application of the AFC the addition
of depolarized regions to the gaps in fibers produces very significant effect on the performance
of AFC. Our results show that the addition of depolarized regions to gaps can increase the

degradation of sensing performance by up to two times.

Recent experimental observations produced by EMPA demonstrate that these gaps in fibers
appear predominantly near the electrodes when the AFC are put under large mechanical strains.
Our simulations for AFC with fibers poled along the fiber diameter demonstrate that the
electric potential difference near such gaps can be significantly reduced (almost to zero) if
depolarization region is added to the gap. If the narrow gap (gap length much smaller than the
diameter of the fiber) is formed without depolarized region it produces very little effect on the
voltage developed in such AFC. Thus, the possibility of the depolarization effect near the gaps
in fibers can be very important if the AFC with these type of poling is used for sensing. In
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particular, it can require dual electrode system to validate the strain measurements. Of course,
the extent of the gap effect on the polarization state (the length of depolarized region) is very
important parameter that is not well defined at the present time. Further studies are being

carried out in order to understand the size of the depolarized regions due to the size of the gap.

AFC with the shear mode of actuation was also analyzed. It was shown that the loss of
actuation performance, due to the presence of gaps, is not as significant in the case of shear
actuation as in the case of the extension actuation. This is due to the fact that the electric field
is through the fiber diameter and not along the length of the fiber, as in the case of the
extension model. Thus, shear actuation is more “forgiving” when non-continuous fibers are
used or when significant amount of damage can be produced in fibers. These results could

serve useful when proposing the use of AFC for “Smart Blades” in rotor wing aircrafts [8,9].

The degradation of the actuation performance of AFC by broken fibers when it is used as
component in elastic structure can be resulting from two factors: the loss of effective
piezoelectric constants of AFC materials and the loss of stiffness. The results obtained in the
simulation of the actuation of unconstrained AFC (section 5.2.3) and end constrained AFC
(section 5.2.8) can be used to estimate the relative importance of these two factors. If the loss
of stiffness produces significant effect then a larger effect of broken fibers should be observed

in the end-constrained system than in the unconstrained AFC.
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Figure 6.0: Normalized AFC extension and contraction displacement vs. the number of gaps.
Figure 6.0 shows the displacement obtained in AFC systems (unconstrained and end
constrained) with different number of gaps and fibers as percentage of displacements obtained
in systems with continuous fibers (100% represents displacement in system with continuous
fibers). The results indicate that the loss of performance is very similar (and the difference is
within expected error of our method) both for free strain and for the end constrained AFC
model. Thus, these results suggest that the loss of performance is mostly due to the loss of

piezoelectric constants and not to the decrease in effective stiffness.
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