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Form casting, precision casting, soldering, welding are al1 manufacturing processes 

that involve solidification. In casting, solid nuclei appear in the liquid, leading to the 

formation of columnar or dendritic (tree-like structures) crystal structures. The type of 

microstructures that forms, whether dendritic or columnar, will influence such 

important material properties as strength and toughness. In this paper a computer 

simulation ofa dendrite in three dimensions (3-D) based on the cellular model is 

described. Our model assumes constant temperature and the dendrite develops due to 

concentration gradients. The simulation is carried out for Al-Si-Cu alloys. 

Concentration profiles in three dimensions are obtained fiom the transport equation of 

solute diffusion and changes in concentration due to phase field changes. 

Concentration at each ce11 with a liquid fiaction is calculated for every tirne step. The 

interface velocity is calculated fiom the cwature at the interface, concentrations of 

each alloying component, undercooling and a kinetic coefficient constant. The time 

step and the velocity provide a new position of the solid-liquid interface for each 

iteration. Ln this model, curvature at each ce11 is calculated using an averaged phase 

field. The average phase field in 3-D is obtained by multipiying the solid fiaction of 

each ce11 and its neighbors by weight factors. This model takes anisotropy effects 

into account in order to avoid splitting of the dendrite tips. The data obtained tiom the 

model allow us to anaiyze the dendrite morphology and parameters such as tip radius, 

spacing between secondary arms, growth velocity and their dependence on 



undercooling. It is expected that the dendrite tip will grow with a stable parabola-like 

shape while the growth at the sides of  the dendrite will be unstable. This instability at 

the solid liquid interface c m  result in the growth of secondary arms. The results are 

compared with analytical mode1 data. 
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1. Objecîive of the Thesis 

The processing and manufacturing of most metal components are affected by 

solidification. During the initial stages of manufacturing of any metallic product, most 

metals are transfonned from a liquid to a soiid phase. The transformation of metal fiom 

liquid to solid phase is known as solidification. Solidification influences such processes 

as casting, welding, soldering, rapid solidification processing and directional 

solidification; thus solidification influences directiy or indirectly every metallic product 

today. Solidification defects tend to remain during subsequent processes; therefore good 

control and understanding of the formation of the solid phase is of great importance. 

How the liquid metai is solidified detennines the microstructure of the material and as a 

result the properties of the material. The property of any metal is dependent on 

parameters such as, for exarnple, grain size, grain shape and soIute composition. During 

solidification the solid phase forms complex patterns that determine the morphology of 

the grain. One of these complex patterns is a tree-like structure known as a dendrite. 

The dendrite morphology develops as a tree-like structure with a primary trunk and 

secondary and tertiary branches. The external environment surrounding the dendrite, such 

as, for exarnple, the temperature and concentration gradients around the dendrite 

influences this tree-like structure [l]. The dendrite morphology is also influenced by 

intemal parameters such solid-liquid interface curvahire, dendrite tip radius, and 
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secondary inter-dendritic arm spacing. It is the objective of this thesis to explain in detaii 

a cornputer mode1 that simulates the dendrite morphology, fiom which it was possible to 

obtain approximations on dendritic parameters such as dendrite tip radius and secondary 

inter-dendritic arm spacing. 

In the next section, we present the layout of this thesis. 

This thesis is composed of the following chapters: 

rn Chapter 1, Introduction 

Chapter 1 outlines the importance of dendrite morphology and the objective and 

layout of the thesis. 

rn Chapter 2, Literature review 

Chapter 2 outlines the theory behind the solidification phenornenon. It discusses 

the parameters that affect the solidification process and analyses the importance 

of the process in manufachuing of matenals. 

The Iiterature review presented in this chapter is based on publications of the past 

10 years (1 989- 1999). The fmt sections of this chapter are a summary of the 

process that affects dendrite growth and morphology. This chapter aiso presents 

the mathematics that describes dendrite growth. 



Chapter 3, Cellular mode1 of dendrite growth 

Chapter 3 describes the cellular model and how it was used to simulate the growth 

of a dendrite in three dimension (3-D) for a tertiary alloy. This chapter presents al1 

the parameters that are taken into account by the model and how the mathematical 

equations used by our model are numerically approximated using a finite 

difference scheme. 

Chapter 4, Results 

Chapter 4 discusses the results obtained fiom our model such as dendrite tip 

radius and growth velocity. Results on tests that validate the model such as the 

conservation of mass test are also presented in this chapter. The results of the 

model are then compared to the results presented by a parabolic approximation of 

the dendrite tip presented by Fisher and Kurz's mode1 [ l )  

Chapter 5, Conclusion and future work 

Chapter 5 provides conclusions on our mode1 and discusses possible changes to 

the model that could improve its accuracy and performance. 



2. O Introduction 

This chapter outlines the theory of solidification phenornenon and dendrite growth. It 

discusses the parameters that affect the solidification process and analyses the importance 

of the process in manufachiring of materials. Later sections of this chapter present the 

mathematics that descnbes dendrite growth. The literature review presented in this 

chapter is based on publications of the past ten years (1 989- 1999). 

2.1 Importance of solid~ftcation and dendrites 

Due to the advances in computer technology, engineers and scientists in the field of 

computational metallurgy are now able to simulate dendrite growth in industrial alloys. 

This simulation allows us to approximate processes that occur in metals, e.g., the metals 

used in the aerospace and automotive industry. Solidification occurs in n a d  processes 

such as the fieezing of lakes during the wintertirne in some countries. Solidification is 

encountered in material processing as, for example, casting and directional solidification. 

When a liquid metal solidifies, it ofien forms a complex pattern of branch structures, 

similar to trees. Such tree-like structures are called dendrite [l]. The understanding of 

the dendrite morphology provides us with an insight into such parameters as tip radius, 
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distance between secondary arms and concentration distribution of solute. These 

parameters affect such important material properties as material strength and toughness. 

The knowledge of the dendrite morphology and its effects on material properties will 

allow material manufacturers to produce higher quality material products. The purpose 

of this thesis is to simulate the morphology of a dendrite in three dimensions (3-D), for 

three component alloys at constant temperature. 

When a metal is solidified several processes occurs simultaneously. These processes are: 

Nuclei formation, 

Crystal growth, 

Heat transfer by heat diffusion, by convection, 

Mass transfer. 

Al1 these processes occur at the same thne and interact making the analysis of the 

solidification phenornenon complicated. The first requirement for the formation of a 

crystal during solidification is the formation of a nuclei. The nuclei can then grow to f o m  

a crystal or it can re-meIt and disappear depending on the nucleus radius. The formation 

of the crystai then leads to the formation of the grain in the metal, thus the importance in 

understanding crystal growth. An example of a dendrite is shown in figure 2-0. 

Figure 2-0: Dendrite Structure 
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Dendrite morphology determines the final microstructure of the material and thus it 

effects such material properties as Ultimate Tensile Strength (evTs), ductility and crack 

resistance among others. These properties are critical and detemine the usability that a 

material is given in industria1 applications, if the material is too weak or toughness is too 

iow then it is probable that the material will have very little if any use in real Me 

applications. 

In our model, mass transfer due to diffusion is the main driving force for the formation 

and growth of a dendrite. In the following chapters, it will become obvious that the 

computer time required to solve a three-dimensional model based on concentration 

gradients for a tertiary system is computationalIy intensive. in order to avoid the 

simulation of the heat transfer process our model assumes constant temperature. 

Analyzing a dendrite morphology based on heat diffusion would require a t h e  step that 

is approximately one thousand times smaller than that for an anaiysis based on mass 

transport, for the same grid size. This would mean that a computer would require doing 

one thousand iteration in the mass transport domain for each iteration in the heat transfer 

domain. A smaller time step would require approximately 3 1 more cells in each 

coordinate direction (x, y and z) in order to solve the same problem, which would require 

more computing tirne. 

For a dendrite to grow it is essential for a nucleus to exist in the Iiquid metai. Our 

simulation begins once the nucleus is developed. In the following pages, we w i l  discuss 

very briefly the processes that take place for the formation of nuclei and the mathematics 

that describes these processes. 



2.2 Nucleation Theory 

Nucleation is the f3st stage of solidification. Nucleation is the formation of minute 

crystalline regions within the liquid metal. These minute crystalline regions are called 

nuclei, embryos or clusters. They are formed due to random fluctuations of patterns of 

atoms within the liquid metal. Atoms fiom the liquid metal c m  attach to these crystalline 

regions. Small crystalline particles can be formed even above the melthg temperature of 

the liquid metal, although they are unstable. Thus, for the formation of a stable nucleus it 

is required that the temperature of the liquid metal is below its melting temperature [ I l .  

The diflerence between the actual temperature of the metal and the equilibnurn melting 

temperature of the system is known as supercooling or undercooling. Undercoolhg can 

be related to the driving force of transformation, Ag: 

AT.  Ah 
Ag = 

T, 
(2- 1 

where 

Tm is the melting temperature of the host component, 

Ag is the difference in Gibbs energy per unit volume between the solid and 

liquid phase 

AT is the undercooling and 

Ah is the difference in specific enthalpy of the solid and liquid [2]. 



The formation of a solid nuclei in the liquid phase leads to the variation of the Gibbs 

energy (AG). This variation of the Gibbs energy is descnbed by equation 2-2 (assuming a 

spherical nucleus): 

where 

Ag is the difference in the Gibbs energy per unit volume between the solid and 

liquid phase 

a is the surface energy per unit area 

"r" is the radii of the nuclei [Il. 

The first term of equation 2-2 represents the contribution of the surface energy while the 

second term represents the volume contribution of the Gibbs energy per unit volume 

between the solid and liquid phase. The second term of equation 2-2 is negative if the 

temperature of the system is below the melting temperature of the alloy and positive if 

vice versa. From equation 2-2, it can be observed that for a small nucleus the 

contribution of surface energy is greater than the volume contribution. If the temperature 

of the system is below the melting temperature, then the volume contribution to the Gibbs 

energy is negative. From this we can conclude that equation 2-2 will have a maximum 

Gibbs energy (AG) at a specific critical radius (r,). 



Surface Free 
Energy Temi 

Embryos k Nudei 

Volume Free 
Energy Tenn 

\ \ 

Figure 2- 1 : Gibbs Energy vs. Nuclei radii. [3] 

From Figure 2-1 we can conclude that a nucleus with a radius greater than r,, will grow. 

If the radius of the nucleus is below that critical radius then the nucleus will re-melt and 

disappear. 

It is important to note that there are two types of nucleation: 

Homogeneous and 

Heterogeneous. 

These two types of nucleation describe the presence or lack of an existent interface at the 

nucleation site. For example, if the nucleus initiates completely surrounded by the liquid 

phase, the formation of the nucleus is called homogeneous nucleation. If the nucleus 

forms on one of the walls of the cast, the formation of the nudeus is known as 

heterogeneous nucleation. In our rnodel, the growth of the dendrite starts once the 

nucleus is greater than the critical nucleus. In the next section of this chapter, we will 
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describe the effects and processes that idluence and contribute to the growth of a nucleus 

to a dendrite. 

The second part of the process of the dendrite development and, evenhially, the formation 

of the grain, is growth. The following effects and processes influence the growth of a 

dendrite: 

Kinetics of the interface (atom rearrangement) 

Heat and mass difision 

Capillarity effects. 

In the following sub-sections, we will describe each of these processes and effects in 

more detail. 

2.3.1 The kinetics of atom attachment at the solid-Iiquid Interface 

The kinetic of the growth of the solid-liquid intedace depends on the probability of the 

atoms king attached to the interface and the probability of those atoms remaining fixed 

on the interface. One way to describe the growth of the solid-liquid interface is to assume 

that atoms have a cubic structure. Any atom would have six different possible 

orientations (faces) for it to attach to the solid-liquid interface. 
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Figure 2-2: Atornic Remangement [ l ]  

From figure 2-2, it is possible to see that an atom that is surrounded by liquid has zero 

atoms in solid phase as neighbors, while an atom that is completely immersed in the 

crystal has six atoms in solid phase as neighbors. The growth of the solid-Iiquid interface 

is determined by the probability of atoms k i n g  attached to the interface and the 

probability of atoms being fully immersed in the crystal, such as the case of atom no. 6 

shown in figure 2-2. in the case of a faceted interface, an atom with two neighbors is 

more prominent to forrn new rows of atoms. These new rows would grow by addition of 

atoms of type 3. Once the complete layer is filled, a very high supercooling would be 

required for the addition of an atom of type 1. Type 1 atoms would constitute a new 

nucleation site for the formation of another layer. This formation of new layer of atorns 

constitutes the propagation of the intedace. This growth can lead to the formation of two 

types of interface morphologies. These are: 

Faceted and 
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Non Faceted 

Figure 2-3: Faceted vs. Non Faceted morphology. [ l ]  

A faceted interface can appear jagged at the microscopic level but is usually very smooth 

and flat at the atomic scale. This type of interface tends to maximize the atomic bonding 

between the crystal and the atoms on the interface, thus, leaving few sites where atoms 

arriving at the interface by diffision fÏom the liquid can attach themselves. The interface 

morphology is dependent on the growth process since substances that allow a non-faceted 

interface growth fkom a melt, also allow a faceted interface growth fiom a solution or 

vapor [l]. 

A non-faceted interface usually has many sites where atoms arrïving fiom the liquid 

metal can attach. Non-faceted interfaces are most common in metais. This type of 

interface tends to be rough at the atomic scale. 

The velocity at which the interface propagates is dependent on the following parameters: 

Kinetic coefficient, 



Curvature, 

Surface energy of the interface and 

Undercooling. 

Al1 these parameters can be caiculated. The kinetic coefficient of most alloys is not 

known and thus it is usually approximated. This approximation is sufficient when the 

growth takes place at low supercooling, since the efTects of curvatrrre tend to have a 

greater intluence on the growth under this condition [4]. 

The velocity of the solid-liquid interface can be mathematically expressed as: 

where 

V is the velocity at the interfaçe (misec) 

pk is the kinetic coefficient of the alloy (m/sK ) 

AT is the difference between the melting temperature of the pure host 

component and the actual temperature of the system (K) 

Ciicl is the liquid concentration of the first alloying element (%wt) 

mi - 1 is the liquidus slope on the phase diagram of the first alloying 

element (WO/owt) 

CliLz is the liquid concentration of the second alloying element (%wt) 



mi 2 is the liquidus slope on the phase diagram of the second alloying - 

element (K/%wt) 

ï is the Gibbs Thomson coefficient (Km) 

k is the curvature of the solid-liquid interface (m-') [SI 

The sum of al1 parameters inside the brackets in equation 2-3 represents the kinetic 

undercooling of the solid-liquid interface. Frorn equation 2-3 it can be observed that the 

velocity at which the interface moves in space increases as the kinetic undercooling 

increases. The liquidus slopes of both ailoying components are calculated from the phase 

diagram. The slopes are approximated as straight lines. This approximation is used to 

simpliQ equation 2-3 because higher order degree polynomials would not contribute 

significantly to the accuracy of the model. The liquidus slopes of both alloying 

components are negative while the concentrations of the ailoying components are always 

positive. Thus, the multiplication of the concentration and the liquidus slope produces a 

negative term in degree Kelvin. The curvature term of equation 2-3 is calculated at every 

point of the interface. Curvature is taken to be positive for a convex solid-liquid interface. 

The value of curvature multiplied by the Gibbs Thomson Coefficient is known as 

capillarity undercooling. Thus, the total kinetic undercoo!ing is the addition of the 

capillarity, composition and thermal undercooling. The total kinetic undercooling when 

multiplied by the kinetic coefficient determines the velocity of the interface. The velocity 

at every point of the interface when multiplied by the time step detemllnes the new 

position of the interface. Every point at the interface may have different values of 

concentration, curvature, undercooling and, therefore, may have different velocities. 

Therefore, by multiplying the velocities at each point of the interface by the same time 
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step per iteration, we obtain different positions of the solid-liquid interface at each point. 

In t h e ,  the position of each point on the interface leads to the development of an 

interface with a complex morphology. This leads to the formation of a dendritic 

structure [SI. 

The different values of concentration at every point of the interface are due to the 

movement of atoms within the solid-Iiquid interface, within the solidifieci region and 

within the liquid region. The movement of atoms is known as mass transport. The next 

section will describe in more detail how the mass transport occurs and the mathematics 

that describes this process. 

2.3.2 Mass Transport 

Diffusion is the movement of atoms in a solid, liquid or gaseous environment fiom areas 

of high concentration to areas of low concentration. Mathematically d i h i o n  is 

described by Fick's First Law of Diffusion, which States that the movement of atoms 

fiom one point to another in space is proportional to the concentration difference between 

these points. Fick's First Law is a steady state equation and, therefore, it is tirne 

independent. The mass transport that occurs during solidification is strongly dependent 

on time. Thus, Fick's Second Law of d i h i o n  descnbes this type of transport [4]. 

Mathematically Fick's Second law of diffusion in one dimension (1-D) is expressed as: 



where 

D is the diffiisivity constant 

dCx/dx is the concentration gradient in the x direction 

dCddt is the rate of change of the concentration in tirne. 

~ation 2-4 is not complete because it does not take into account the mol ~ement of the 

solid-liquid interface. During the solidification of alloys solute is rejected from the solid 

region into the liquid region, thus creating a region of excess solute also known as the 

diaision boundary layer. This layer is created during a transient period. The solute is 

rejected because the solid-liquid interface moves in space. During this transient period, 

the sohte can be rejected if the solubility of the solid in the liquid is greater than that in 

the solid. In other words this rejection occurs if the distribution coefficient 

(kcsoild/Cliquid) is less than one. The solute rejected is then diffused through out the rest 

of the system, following the concentration gradients. In most cases, the rate of rejection 

of solute fiom the solid region and the growth rate of the solid-liquid interface are 

proportional to each other [ 11. 

When the solid-liquid interface moves it produces a concentration change that 

mathematically can be expressed by equation 2-5 : 

where 

O 

O 

N is the excess solute due to the solid-liquid interface movement 

d i j k  is the change in the phase field. 
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C' i i t i j *  is the liquid concentration in ce11 i j,k at the current tirne step 

C' ,, - ,i, is the solid concentration in ce11 i j,k at the current t h e  step 

&, Ay, & are the grid size in x, y and z coordinate direction [SI. 

ï h e  excess solute that is rejected is redistributed through out the liquid phase of the 

neighboring cells when the liquid fiaction in that ce11 is less than 50% of the ce11 volume. 

When the liquid fraction in a ce11 is greater than 50% of the ce11 volume the excess solute 

is redistributed through out the cell. This will be explained in more detail in Chapter 3, 

since this is a principle part of the concentration redistribution function. 

in the sarne way that solute is transferred fiom areas of high concentration to areas of low 

concentration, heat moves fiom hot to cold areas within space. Heat diffùsion is not taken 

into account by our model since our model assumes isothermal conditions. Dendrite 

simulations are usually rnodeled either taking into account solute redistribution ( m a s  

transfer) or heat redistribution (heat transfer). To take both mass transfer and heat transfer 

into account is very computationally intensive. 

Another effect that influences the growth of a dendrite is the capillarity effects, this effect 

is explained in more detail in the next section. 

2.3.3 Capilaty effects 

Curvature at a point on the solid-liquid interface can be defined as the amount of degrees 

of bending or a tendency of that point to depart fiom a tangent drawn to the solid-liquid 

interface at that point [6].  The cwature  of the interface multiplied by the Gibbs- 

Thomson coefficient is known as capillarity undercooling as shown in equation 2-6. 
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where 

k is the curvatwe of the solid-liquid interface 

ï is the Gibbs-Thomson coefficient 

Capillary effects are only important in those interfaces which size is approximately less 

than 10 micrometers. The fiee enthalpy of a small particle in a liquid mett increases as 

the size of the particle decreases, while the f?ee enthalpy of the liquid surrounding the 

particle rernains constant. The fiee enthalpy of the liquid remains constant because the 

liquid metal smund ing  the particle is greater than the size of the particle. The free 

enthalpy of a srnall c w e d  particle can be defined as the multiplication of its internai 

pressure by its molar volume. This intenial pressure can be mathematically expressed as 

the multiplication of the curvature of the interface and the interface energy. The interface 

energy is defined as: "the reversible work required for the creation of a new surface area. 

In the case of a solid-liquid interface, the specific interface energy can be set equal to the 

interfacial tension."[ 1, page 2041. In surrimary, as the curvature increases the interna1 

pressure increases and thus the fiee enthalpy of the particle increases. Capillarity effect 

then plays an important role on nuclei formation, growth, dendritic and eutectic 

morphologies. 

Mathematically curvature of an interface is calculated by equation 2-7: 



where 

g is the averaged phase field of the solid-liquid interface 

V* (including the dot) is the divergence of a vector 

Vg is the gradient of the average phase field 

Vg/lVgl is the unit vector of the average phase field.[l] 

Curvature multipiied by Gibbs-Thomson coefficient is known as capillary undercooling. 

Gibbs-Thomson coefficient is the ratio of the interface energy and the solidification 

entropy [SI. 

Chapter 3, presents in more detail how the cwature of the solid-liquid interface is 

calculated. In this chapter we just wanted to present the overall theory and concept of 

cwature and how this one affects the growth of the solid-liquid interface. In the next 

section, we briefly present the different numerical methods used to describe the formation 

and growth of a dendritic structure. 

2.4 Dendrite formalion and growth 

Several models have been developed to describe crystal growth. Some of these are: 

Tracer point model, 

Phase field model and 

Cellular model. 

The first two models will be briefly described in the next sections. The cellular model 

will be described in depth in Chapter 3. 



2.4.1 Tracer points 

The tracer point mode1 consists in representing the solid-liquid interface as a set of points 

in space as shown in figure 2-4. 

Figure 2-4: Tracer point representation 

This method is usefûi when the shape of the solid-liquid interface is not very complex. As 

the dendrite grows the morphology of the solid-liquid interface becomes complex very 

fast, due to the formation of  secondary and tertiary branches as shown in Figure 2-5. 

Figure 2-5: Complex Solid-Liquid Interface using tracer points [7] 
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Section A-A 

Figure 2-6: Section A-A 

Figure 2-6, shows one of the disadvantages of using tracer points when the shape of the 

solid-liquid interface becomes complex. The use of tracer points to represent complex 

solid-liquid interface becornes very computationally intensive and it becomes very 

difficult to keep track of the position of each point with respect to its neighbors in tirne. A 

3-D representation of the solid-liquid interface morphology would be even harder since 

the points might fmd themselves in situations that would allow them to move through the 

control volume 360° in al1 coordinate directions. The implementation of boundary 

conditions is not a trivial task. 

The use of the tracer point mode1 is feasible when the solid-liquid interface is simple and 

two-dimensional. In section 3.2 we briefly describe another method to mathematically 



2.4.2 Phase Field model 

The last section of this chapter briefly describes another method used to simulate dendrite 

structures, cellular structures and processes such as Ostwaid ripening arnong others. The 

phase field model provides a simple and elegant method for simuiating the physical 

phenornenon aiready mentioned. The phase field model is aiso computationally simple to 

implement in corilparison to methods such as the tracer point method. 

The phase field model is based on a mathematical equation known as cp(x,t) which 

characterizes the interface at each point in space and tirne. The phase field model 

assumes q(x,t) to be a constant. For exarnple if <p(x,t)= % a phase field value greater than 

'/Z would denote a solid region while a phase field value less than % would represent a 

liquid region. This phase field function exists within a fixed region symbolized by R. 

This region has boundary conditions described at dR. Parameters such as temperature 

and concentration for the alloying components wouid be represented by c(x,t), while the 

temperature would be represented as T(x,t) [8]. 

Another important aspect of the phase field model is that it assumes that the Helmholtz 

fiee energy (3) is also a fünction of the cp(x,t). Thus mathematically Helmholtz fiee 

energy would be described as: 



where, 

<p is the phase field function 

S2 is the region containhg the phase field function 

dR is the boudaries of the phase field function. 

E is a constant 

While the f?ee energy density is described as: 

where 

W is a constant (Jouledm3) 

B(T) is a rnonotonic increasing function of temperature 

The monotonic increasing function B(T) is a fùnction of temperature such that at Tm (the 

freezhg temperature) and at lP(T)l less than a half the rnonotonic increasing function 

P(T) is equal to zero. 

By graphing the fiee-energy density function as îünction of the phase field value we 

obtain two minimums in which the phase field may exist in a stable condition. These 

minimums occur at a phase field of zero and a phase field value of 1 (completely liquid 

or completely solid regions). This would indicate that a change of phase fiom solid to 

liquid or liquid to solid within the region represented by C2 incurs an energy penalty. Any 

change in the phase field <p that departs the phase field value nom zero or one would 

produce an increase in the total energy of the system. The restriction that 1B(T)1 less than 

one half ensures that these two minimums exist as seen in figure 2-7. 
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Figure 2-7: Free-energy density fûnction 181. 

Figure 2-7 also shows that when the system temperature is greater than the melting 

temperature of the host component, the global minimum on the fkee energy density c w e  

occurs at a phase field value of zero (liquid state). It also shows that when the system 

temperature is less than the melting temperature of the host component then the global 

minimum of the fiee energy density curve occurs at a phase field value of one (solid 

state). 

The phase field mode1 can also be used to model the phase field evolution of a binary 

system in an isothermal condition, although the model can be extended to a tertiary and 

higher order systems. The fiee energy density for each component is of the form of 

equation 2-8 where the constants that describe this equation are unique to each alloying 

component. Assuming the foilowing conditions: 



where 

Tm is the melting temperature of component A or B 

T is the temperature of the system 

f3 is a monotonic increasing h c t i o n  of T. 

Then the energy density function of a solution assuming it is an ideal solution is 

described by equation 2- 10: 

where 

R is the universal gas constant and 

v, is the rnolar volume (assumed to be constant) [SI 

The first two terms of equation 2- 10 describes are the contribution of the fiee energy 

density of each component, while the last term of this equation relates to the mixing of 

the components in the solution (assuming ideal solution). 

In the phase field mode1 the phase field evolution is mathematically descnbed as foliows: 

where 

L is a differential operator 



3 is the Helmholtz fiee energy as descnbed by equation 2-7 [8] 

The last section to be described by the phase field model is the boundary conditions. 

These are described by equation 2-10: 

where 

n is the normal to the boundary (ûQ) 

c is the composition of the solution and 

cp is the phase field function [83. 

Equation 2-10 States that the change in composition of the system due to mass transport 

across the boundary is equal to zero. 

One of the mayor advantages of the phase field model is that it describes very we!l the 

physical phenomenon that affects dendrite growth. This model has lead the way in 

understanding the parameters that affect dendritic morphology. The mayor disadvantage 

of this model is that its implementation for a three dimensional model of ailoys is too 

computationally intensive. A significant improvement in finding a solution to this 

problem has k e n  achieved for thermal dendrites. The computational efficiency of the 

phase field method has k e n  enhanced with the introduction of the formulation allowing 

for the use of a larger boundary thicknesses [9,1 O]. The most important result of this 

improvement is a real possibility to produce a 3-D simulation. However, this opportunity 
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is limited to thermal dendrites of pure matenals. The cellular model overcomes the 

limitations of the phase field model in irnplementing it for large dendrite simulations 

fiom a computational point of view. The cellular model does not describe with the same 

degree of exactness the solid-liquid interface morphology, and certain parameters such as 

curvature are estimated. The major advantage of the cellular model is its ease of 

implementation for large three-dimensional systems in binary or tertiary alloys. 

The resuits that are described in this thesis of dendrite growth for tertiary alloys are the 

first to describe realistic dendrite growth in alloys. 

In conclusion, the phase field rnodel is one of the computational (mathematical) 

techniques used to describe physical phenomenon that occurs in nature such as the 

formation and growth of crystals during solidification. In the next chapter the cellular 

model, which was used to describe the growth of a dendrite, is explained and described in 

detail. 



Chapter 3: Cellular Mode1 of Dendrite 

3. O Introduction 

This chapter describes the cellular model and the ways it was used to simulate the growth 

of a dendrite in three dimensions (3-D) for a three component system. The chapter 

presents h detail the mathematical equations that describe the phase evolution of the 

system. It also contains the mass transport equations and explains how these are 

approximated using the finite difference method to obtain the solute concentration 

profiles. We then present the ways each ce11 uses the values of solute concentration, 

cwahire of the solid-liquid interface and thermal undercoolhg to determine the interface 

velocity at each cell. This chapter also describes the functions that are part of two 

cornputer programs that d e h e  our model; these are Phase-maker and Phase-evolution. In 

the next pages, we will discuss in detail the following sections of our rnodel: 

Phase field representation 

Mass transport equations 

Curvature analysis 

Stability critena and tirne step 

Interface Velocity 
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Phase field evolution 

Isothermal Conditions 

Anisotropy effects 

3.1 Phase field represerttation 

In the cellular model, the control volume is divided into small sections known as cells. 

The cells are assigned a phase field value that represents the physical state of the material 

in that cell. The phase field value is equal to the volume fiaction of the solid phase in the 

cell. 

The cells are assigned specific lengths in x, y and z direction. In our model, the actual 

length of each ce11 in every direction of the coordinate system is the same. The sum of al1 

the ce11 in one direction detennines the total length of the control volume in that 

direction. Figure 3-0, shows how the control volume is divided into a smaller cells, 

forming a numerical mesh. 

Figure 3-0: Control Volume 
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Each ce11 is assigned an identifier within the control volume that is equal to the ce11 

number in the x, y, and z coordinate system. As an example, celi 30,20,40 is a ce11 

located at 30 cells in the x direction, 20 in the y direction and 40 in the z direction. In 

order to create the initial phase field, a computer program known as Phase-maker was 

developed. Phase-maker is a simple computer program written in C language. The 

program is a for-loop that assigns a specified value equal to zero or one to the phase field 

array at every cell in the control volume. Phase-maker aiso assigns the initial 

concentration values of the two alloying elements. The third element is obtained from the 

fact that in each cell the sum of al1 elements adds to 100%. Phase-maker also asks the 

user for other physical and matenal parameters that are required by the phase evolution 

part of the model. These physical and material parameters are: 

Grid size of each ce11 (meters), 

Number of ce11 in the x and y coordinate system (i j), 

Number of ce11 in the z coordinate system (k), 

Initial concentration of element 1 (in our study element 1 is Silicon), 

Initial concentration of element 2 (in our study element 2 is Copper), 

Temperature of the system (Kelvins), 

Is noise added or not to the system, 

Kinetic coefficient (m/(sK)), 

Diffusion constant of the liquid host (in our model the host is Aluminum), 

Liquid diffusion constant of Silicon in Aluminum (K/%wt), 

Liquid diaision constant of Copper in Alurninum (K/%wt), 

Gibbs Thomson Coefficient of the alloy (mK), 
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Liquidus slope of Silicon in Aluminurn fiom the phase field diagram 

(WO/owt ushg the negative sign convention), 

Liquidus slope of Copper in Aiuminurn kom the phase field diagram 

(K/%wt using the negative sign convention), 

Solidus slope of the Silicon in Aluminum fiom the phase field diagram 

(K/%wt using the negative sign convention), 

Solidus dope of the Copper in AlUII1iI1um fiom the phase field diagram 

(K/%wt using the negative sign convention), 

Melting Temperature of the host component (K), 

Boundary condition (Periodical in i j but not in k or periodical in i j, and 

k), 

Every how often will the code Save the information to the hard drive. 

Al1 of these parameters and the initial phase field are stored in a text file to be read by the 

Phase-Evolution program. The acnial code for Phase-maker is found in Appendix "C". 

An initial phase field is presented in figures 3-1 and 3-2. The visualization tools is known 

as Techplot (Amtec Engineering Inc), and allows us to visualize in three dimensions the 

contour plots of the solid-liquid interface. 

Figure 3- 1 : Initial phase field cut in two dimensions (2-D) 



Figure 3-2: Initial Phase Field Contour Plot in 3-D 

Figure 3-2, represents the initial nucleus that is required for the growth and formation of a 

dendrite. It is this initial information of the nuclei that Phase-maker produces as an output 

file known as "phasein.txtV. The initial nucleus c m  be either on a flat plate or it c m  be 

perturbations on a sphere. Phase-maker creates this initial sphere by using a random 

generator. This randorn generator generates a random number of points within each cell. 

Phase-maker then compares the position of each random point in that ce11 to a radius that 

has been specified by the user. If al1 points are within the radius then the ce11 is assigned 

a phase field value of one, if the points are d l  outside the radius then the phase field in 

that ce11 is assigned a value of zero. If the ce11 has points that fall in and outside the 
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radius value it assigns the phase field value of that ce11 a percentage of the total nurnber 

of points that fa11 within the radius. 

Most runs in our analysis are done on the formation of a dendrite fiom a flat plate as 

shown in Figure 3-2. This is because computationally it is less tirne consuming. The 

Phase-evolution program models the evolution of the initial nuclei to the formation of the 

dendrite. The phase-evolution code can be found in Appendix "C". The formation of a 

dendrite requires a perturbation, otherwise an initial flat plat wodd solidie as a flat plate, 

while a perfect sphere will solidi@ as a perfect sphere. In nature, this is not likely to 

occur and special processes are required in order to achieve flat plate solidification as for 

exarnple the formation of crystal wafers in the serniconductor industry. It is important to 

understand that no physical surface is completely flat, while mathematically one may 

represent a surface to be completely flat. The presence of the perturbation leads to the 

growth of the nucleus and eventuaiiy the formation of a dendrite. Phase-Evolution is 

capable of simulating the growth of the nucleus due to mass transport eEects at the solid- 

liquid interface. This mass transport leads to a movement of the solid-liquid interface. 

This change in the position of the phase field in tirne can be mathematically expressed as: 

where 

At is the time step 

O 1 is the time enurnerator 

a i, j, k are the ce11 numbers dong the x, y and coordinate system 

a S is the area of the interface boundary in a ce11 

O fijk is the value of the phase field in ce11 i j,k 

40 



a MQk is the change in the phase field value per time step 

a Ax, Ay and Az are the grid size of the ce11 in the x, y and z coordinate 

system [5 1. 

From equation 3-0, it is possible to determine the new position of the phase field at every 

cell. The factors that affect the change in position of the solid-liquid interface are the 

velocity interface at each cell, the t h e  step and that the ceil has a fiaction solid or one 

immediate neighbor that is completely solidified. The velocity of the interface is 

influenced by parameters such as, concentration, temperature and curvature of the solid- 

liquid interface. The solute tninsfer drives the growth of the nucleus nom areas of higher 

concentration of solute to areas of lower concentration of solute. The mass transfer 

process is explained in more detaiI in section 3.2. 

3.2 Mass Transport 

Mass transport is the process by which mass is moved through the control volume in 

accordance to Fick's laws of d imion .  Concentration is diffüsed within the control 

\ oIume from region of high concentration to regions of low concentration. Every ce11 is 

assigned a concentration value for the liquid and solid phase. In our rnodel, mass transfer 

through the solid cells is not taken into account. This approximation is possible because 

the rate of diffusion in liquid is approximately one thousand times greater than in solid. 

The change in the liquid concentration of a ce11 for any alloying component can be 

derived fiom expanding Fick's Second Law of Difbion in three dimensions (equation 2- 



4). The finite ciifference approximation for the evolution of concentration in a ce11 can be 

mathematically expressed as (equation 3-2): 

At is the time step 

"1" is the time numerator. 

cijLI+' is the new concentration in that cell. 

ci,: is the concentration in that ce11 for the previous t h e  step 

h, Ay, Az are the grid size in each coordinate direction 

i j,k are the coordinate indices of each ce11 dong the x, y and z coordinate 

system and 

D is the diffusion constant [SI. 

The finite difference scherne was used since it is computationally easier to implement 

than the finte element approximation due to the local character of the evolution 

equations for hctions of solid. 

Equation 3-0 allows us to calculate the new concentration values for each ce11 per time 

step. It is important to note that equation 3-0 does not include the effects of concentration 

build up at the interface due to the solid-liquid interface movement. In order to take into 

account the concentration change due to solid-liquid interface rnovement, it is necessary 

to add to the right hand side of equation 3.0 the excess solute released. The excess solute 

released due to solid-liquid interface movement is calculated as: 



where 

Afi,k is the change in the phase field 

O clliq ijk is the liquid concentration of that ceil 

O C:(T~,~) is the solidus concentration of that ce11 at the fument system 

temperature 151. 

This solidus concentration is obtained fiom the phase diagram at the system temperature. 

Equation 3-2 can also be expressed as: 

Ercess - Solute =A& . (Clq, - (1 - k)) (3-3) 

where 

k is the distribution coefficient [SI. 

The distribution coefficient is the ratio of the solidus to liqiiidus concentration lines. This 

ratio is approximately 0.13. Equation 3-2 and 3-3 are equivalent to each other. In the 

cellular model the equations used to calculate the new concentration values for each ce11 

is very dependent on the amount of liquid £?action in the cell. Our model assumes that 

when the fiaction of solid in each ce11 is small the mass is transferred within the cell. As 

the ce11 is almost completely solidified (more than 50% of the cell) then the model 

assumes that the transfer of mass occurs proportionally to the amount of liquid in the 

neighboring cells. The neighboring cells are oniy the immediate neighbors that have at 



least one face in common with the ce11 under study. In the following sections, we present 

how the new concentration values for each ceIl are calculated and how the diffusion 

effects are takea into account. 

3.2.1 Mnss Transfeer in ceils with Iiquid fractions grenter than or equol 
to '/t 

In a ce11 that is completely iiquid or has a mal1 fiaction of solid (a fiaction of solid which 

is less than 50% of the cell) the concentration evolution of any alloying component is 

calculated as follow: 

where 

a is the new concentration value in a ce11 

O ~ ' i j k  is the concentration value at the previous t h e  step 

O i j,k indicate the ce11 number and the location of the ce11 within the control 

volume 

a fjk is the hction of solid in a ce11 



dijr is the change in the fraction of solid within the ce11 (phase field 

change). 

a Dliq is the liquid diffusion constant 

a At is the time step 

a Ax, Ay, Az is the grid size of the ce11 in the x, y and z coordinate system 

and 

a 0 is a step function [SI. 

Equation 3-4, takes into account the concentration diffusion from al1 neighboring ce11 as 

well as the effects in the change in position of the solid-liquid interface in that cell. The 

(8(1-f$) step fuaction is detemiined as follow: 

The step fùnction (Equation 3-5) is included in equation 3-4 to prohibit the diffusion of 

solute fiom the liquid phase into the solid phase. This is done to avoid solute diffùsion 

from the liquid phase into the solid phase. In reality certain cells might receive solute 

from the liquid, but the physics behind this transfer is not taken into account in our mode1 

for simplification reason and also because it would not contribute significantly to a 

different morphology, due to the slow process of intake of solute by the solid phase. 

Equation 3-4 can be used also to simulate the concentration evolution in the solid phase. 

The only parameter that wodd change is the value of the diffusion constant. 



The second scenario that is required to be simulated is when the liquid fkaction in the ce11 

is less than 1/2. This scenario is described in section 3.2.2. 

3.2.2 Muss Thansfer in cefls with liquid fractions less than 54 

Wher, a ceil solidifies the liquid percentage in the ce11 is reduced and the liquid fiaction 

approaches zero, under these last stages of a solidification of the cell, the concentration 

approaches infinity. It approaches infinity because any concentration assigned to a ce11 is 

redistributed as a percentage of the liquid hction remaining in that cell, and if this liquid 

fraction approaches zero then the concentration assigned to it would approach infinity, 

causing Iarge concentration fluctuations. 

If the ce11 s e e r s  a positive change in the phase field then the excess solute is calculated 

based on equation 3-3. The excess solute is then redistributed to the neighboring cell. 

Each neighboring ceii, receives a percentage of the total excess solute calculated for ce11 

"i j,k" based on the fiaction of liquid remaining in each neighboring cell. 

If the ce11 suffers a negative change in the phase field (re-melting of the cell), then the 

excess solute calculated is assigned to ce11 "i $,km. It is important to note that the process 

of assigning the excess solute to one ce11 is not in accordance to the physical 

phenornenon, but it is done as a simplification to the problem. In most cases, most cells 

throughout the complete simulation do not s e e r  re-melting of the solid phase and 

therefore it is considered a valid approximation. 



Mass transfer is not the only parameter that affects the velocity and evolution of the 

solid-liquid interface, an example of this is curvature. The curvature effects and how 

these are calculated for the solid-liquid interface are explained in more detail in the next 

section. 

3.3 Curvature of the Solid-Liquid Interfae 

In order calculate the cwature of the solid-liquid interface, Phase-evolution cornputes an 

average phase field. Calculating curvature on the actuai solid-liquid interface can provide 

abrupt changes on the curvature values fiom one ce11 to its neighbors. These abrupt 

changes can cause the curvature fiinction to provide curvature values that are not 

representative of the actuai curvature of the solid-liquid interface. Section 3.3.1 explains 

in more detail how an average phase field is obtained. This average phase field is then 

used to calculate the values of curvature at every cell. 

3.3.1 Average Phase Field 

The phase field represented by fijk at each ce11 is used to calculate an average phase field 

at each ce11 (g& In the Phase-Evolution program, the average phase field fûnction 

assigns to each ce11 a weight factor. These weight factors multiply the solid fiaction of 

each cell. 



Top Layer Middle Layer Bottom Layer 

Figure 3-3, Weight Factors 

Figure 3-3, shows the weight factors. The summation of al1 the weight factors adds up to 

a total value of 3.9. The average phase field for ce11 i j,k is calculated as the sum of the 

solid fiaction of each ce11 mdtiplied by its corresponding weight factor which is then 

divided by 3.9. The sum of al1 the weight factors are assigned to an average phase field 

array. This operation is the repeated for every ce11 in the control volume at every time 

step. 

The weight factors where determined by creating a spherical solid-liquid interface. The 

curvature function is then iised to compute the curvahire at every ce11 on the sphere. The 

inverse of the cwature  at each ce11 provides the radius of the sphere, which can then be 

compared to the theoretical radius of the sphere. The best weight factors obtained from 

this test are shown in Figure 3-4 



Top Layer Middle Layer Bottom Layer 

Figure 3-4, Weight Factors for a spherical nucleus 

Figure 3-5 and 3-6, show the test sphere and a cross section of it. The inner part of the 

sphere is assigned a phase field value of one (solid state), while the outer area is assigned 

a phase value of zero (liquid state). Al1 cells in between the solid and liquid phase will 

have a phase field value between zero and one, corresponding to the fiaction of solid in 

each cell. 

Figure 3-5: Test Sphere 
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Figure 3-6: Cross Section of Test Sphere 

The results of the curvature values obtained wing the weight factors shown in figure 3-4 

are presented in table 3 - 1. 

Table No. 3-1: Curvature Results 

Test Delta 

Case 

No. 

Pass Pass Pass Failures 

within within within (%) 

30% 50% 60% 

(Y*) (Y.) (94.) 

15 16 9.9 50 

Average 

Curvature 



As it is seen in Table 3-1, the average curvatwe produced using the weight factors shown 

in figure 3-4 overestimated the theoretical curvature. The incorrect weight factors can 

provide average phase fields that are not representative of the actual solid-liquid interface 

as it is shown in figure 3-7. 

Average Phase Field Actual Phise Field 

va 4' v2 

Figure 3-7: Average phase field using the weight factor for sphencal nucleus. 

The average phase field shown in figure 3-7 was obtained using the weight factors shown 

in figure 3-4. As it is seen in figure 3-7 the average phase field does not reflect the 

splitting that occurs at the tip of the dendrite. This over smoothening of the phase field is 

because the weight factors used overestimate the contribution of its neighbors on the ijk 

ce11 when computing the average phase field. 



Figure 3-8: Average and Actual Phase Field using the weight factors of Figure 3-3 

The phase field shown in figure 3-8 show the average and actual phase field of a dendrite 

with a split tip (anisotropy effects not taken into account). The average phase field 

reflects what is occuning on the actual phase field. A wrong estimation of the average 

phase fieId can be detrimental in the simulation of a dendrite, since curvature is an 

important parameter in the calculation of interface velocity. The caiculation of curvature 

on the averaged phase field is explained in detail in the next section. 

3.3.2 Computatiurt of curvature on an average phase field 

Mathematicaliy curvature can be defined as: 

where, 



g is the averaged phase field 

V- (including the dot) is the divergence of a vector 

Vg is the gradient of the average phase field 

Vg/lVgj is the unit vector of the average phase field. 

A more detailed form of equation 3-6 for a three dimensional system (3-D) is shown in 

equation 3-7: 

where 

a 

a 

a 

a 

a 

K is curvature of the average phase field 

x, y and z are the coordinate directions within the control volume 

g, is the partial derivative of the average phase field "g" with respect to x 

g, is the partial derivative of the average phase field "g" with respect to y 

g, is the partial denvative of the average phase field "g" with respect to z 

g, is the second partial derivative of the average phase field "g" with respect 

to x 

g, is the second partial denvative of the average phase field "g" with respect 

to Y 

g, is the second partial derivative of the average phase field "g" with respect 

to x and z 



& is the second partial derivative of the average phase fieId "g" with respect 

to x and y and 

g, is the second partial derivative of the average phase field "g" with respect 

to y and z. 

Equation 3-7 allows us to calculate the curvature value on the average solid-liquid 

interface field. Curvature is only calcdated on those cells that have a hction of solid 

greater than but not equal to zero and less than but not equal to one. When the simulation 

is carried out with small cells (10 time smaller thaa the theoretical tip radius estimated by 

Fisher and Kurz model) the results obtained are quite accurate. 

Although the curvature effects of the solid-liquid interface are an important parameter in 

the formation of the demirite it is not the only one. Temperature is another important 

parameter that influences the morphology of the dendrite. In the next section, temperature 

and why the use of an isothennal conditions for the simulation of a dendrite is described 

in detail. 

3.4 Isothermal Condition 

Temperature is another pararneter that affects the growth of a dendrite. In any casting 

system, a cooling process within the cast is present. The temperature variation fiom one 

side of the cast to the other side, might be large, but if analyzed at a single grain these 

temperature variations fiom one side of the grain to another are not likely to be that large. 

It is this reasoning that allows us to assume that for the simulation of a single dendrite we 



can assume a constant temperature through the control volume of that the dendrite. Thus, 

an isothemal condition is not a probable condition when analyzing large distances within 

a casting system but can be assumed a good approximation for a single dendrite. 

The temperature of the system for al1 our runs is assumed constant and below the melting 

temperature of the host component, thus providing a thermal undercooling. 

3.5 Stabiliiy Criteria and The Step 

The Fourier Number defines the stability criterion for our model. The Fourier number is 

mathematically described as: 

where 

s is the charactenstic dimension of the body, 

a is the thermal or mass difiisivity, 

r isthe timestep.[ll] 

The Fourier number as described by equation 3-8 is useful for regular shapes with a 

characteristic dimension, such as a sphere, cylinders, blocks, etc. In the case of dendrite 

growth the final morphology is not defined or established beforehand. Dendrite growth is 

also a very time dependent problem. Transient numerical analysis is therefore required to 

simulate the growth of dendrites. The Fourier Number (Fo) describes a relationship 

between the time step and grid size within a numencal mesh. If the grid size is chosen, 



the time step is automatically set. In numencal transient conduction problems, the 

relationship between time and grid spacing is described by the inverse of the Fo number. 

where 

8 M is a number equal or greater than 2 for 1-D, to 4 for 2-D and 8 for 3-D, 

0 a is the diffiisivity constant and 

At is the time step [Il]. 

Our model uses equation 3-9 to determine the time step. The grid size is chosen to be 

equal to the tip radius estimated by Fisher and Kurz model or 2 ,5 ,  10 or 20 tunes smaller 

than the estimated theoretical tip radius. From this theoretical tip radius we determine the 

grid size, and thus the time step is calculated fiom equation 3-9. If one did not have a 

theoretical estimation of the tip radius, one would reduce the size of the grïd size until the 

tip radius value obtained converges to a number. 

The use of small time steps is inherent in problems that are solved using the explicit 

method. An implicit solution would provide the use of larger time steps that one wodd 

initially consider an excellent advantage. The disadvantage of having an irnplicit solution 

in a non-linear problem like the one of sirnulating crystal morphologies is that the 

implicit solution for the whole control volume is much more difficult to implement 

computationally. nie implementation of an irnplicit solution to a dendrite growth 

simulation is not impossible but one would fuie that solving the solution implicitly would 

require more computational calculations in solving al1 the required equations even though 

the time step is larger, thus our choice to simulate dendrite growth explicitly. 
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3.6 Interface Velocily 

Al1 of the parameters described above influence the final shape and morphology of the 

dendrite. The formula that puts ail these parameters together is the velocity equation. The 

interface velocity is mathernatically described by equation 3- 10: 

where 

O 

Vijk is the velocity at ce11 i j,k (meters per second) 

1 is the t h e  enurnerator 

Tm is the melting temperature of the host cornponent 

C1ijk-, is the liquid concentration of the frst alloying component (%wt) 

miiLi is the liquidus dope fiom the phase diagram of the first alloying 

component (Wowt) 

c ' ~ ~ ~ - ~  is the liquid concentration of the second alioying component 

(Nwt) 

ï is the Gibbs-Thomson Coefficient (mK) 

k is the curvature of the solid-liquid interface at ce11 ijk 

TiIk is the temperature of the ce11 ijk (K) . [5 ]  

The melting temperature of the host component is a constant. Due to our assumptions of 

isothermal conditions the temperature of each ce11 is also a constant. Thus, the thermal 

supercooling for each run is constant. 



The concentration of the f h t  and second alloying components varies for every time step 

following the laws of diffusion already explained above. These changes in concentrations 

at every iteration cause the veiocity for the ce11 to Vary at every i 

D P O Bo 

Figure 3-9: Concentration contours. 

Figure 3-9, shows a cross section of a growing dendrite and the iso-concentration 

contours around the dendrite. The closer the contours are one to the other (near the tip) 

indicate a stronger gradient of concentration. Beyond the transient growth period, the 

concentration at the solid liquid interface near the tip becomes very close to the liquidus 

concentration at the interface temperature, taking into account the capillary 

undercooling[S]. At the steady state condition, the tip of the dendrite grows with a 

constant velocity, thus indicating an equilibrium condition between temperature, the 

concentration profiles in that region of the dendrite and a constant curvature. 

The kinetic coefficient (pk) for most alloys is not known and is not easily determined, 

although it can be approximated using equation 3-1 1 : 



where 

V, is the velocity of sound in the liquid alloy 

L is the latent heat of the alloy 

V, is the molar volume 

R is the gas constant and 

Tm is the melting temperature of the host component. [ 5 ]  

Equation 3-1 1, is used as an approximation of the kinetic coefficient. The approximation 

is always good as long as the growth happens in the capillary regime. in other words, the 

effects of curvature tend to have a greater influence than the actual value of the kinetic 

coeffiicient. In our present model, we use a kinetic coefficient value of 0.1 1 m/(sK). 

The multiplication of the interface velocity with the tirne step allows us to determine how 

the interface moves in every ce11 for every time step. In the next section, we explain in 

more detail how the interface propagates within a ce11 and the conditions required to 

propagate into surrounding celis. 

3.7 Phase Evolutiort 

When the initial phase field is completely flat and has no perturbation, the phase field 

solidifies as a flat surface. In reality a completely flat surface with no perturbation is not 

an easy task and requires extreme care and very well controlled experiments. The flat 

phase field grows flat because there is no change in the concentrations ahead of the solid- 
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liquid interface, there is no change in the curvature of the solid-liquid interface and there 

is no change in the temperature of the system (in the case of our model). The initial 

perturbation, produces a change in the curvature and a change in the concentration ahead 

of the interface that leads to different velocities near the perturbation. These changes in 

velocities lead to the re-melting of the perturbation (negative velocities) or the formation 

of a dendrite (positive velocities). 

The evolution of the solid-liquid interface is rnathematically represented by equation 3- 

12: 

where 

Pijk is the phase field value in ce11 i j,k, 

1 is the tirne enurnerator, 

Vijk is the velocity in the ce11 i ,j,k ( d s ) ,  

A is the grid size, in the present mode1 the grid is cubic (m), 

O At is the thne step (s). [5]  

Equation 3-1 2 shows that the new value of the phase field in ce11 i j,k is equal to the oId 

value of the phase field plus the time step multiplied by the velocity calculated in that ce11 

and divided by the grid size. 

When the velocity is negative in a cell, the fiaction of solid is reduced (re-melting). In our 

model re-melting only occurs in those cells that have a fiaction of solid greater than zero 

but less than one. In other words, once the ce11 is completely solidified Our model does 
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not allow for re-rnelting of that cell. This approximation is possible because re-melting of 

the solid-liquid interface does not regularly occur during solidification and because it 

simplifies considerable the model. This still leaves the possibility that the change in phase 

field be greater than the solid fraction available in that ce11 (re-melting). in this case, the 

phase field of that ce11 is assigned a value of zero (completely liquid). 

Mien the change in the phase field is positive (positive velocity), then the solid fraction 

in that ce11 is increased. If' the change in the phase field is greater than the allowable 

liquid fraction to solidifi the ce11 is assigned a value of one (completely solid). 

Mathematically the change in the phase field cm be greater than the grid size. In order to 

avoid changes in the phase field that are greater than the grid size or greater than the 

available liquid to solidifi in that ce11 the maximum allowable change in the phase field 

is calculated. This maximum allowable change is based on a thermodynamic equilibrium 

condition. The maximum allowable change in phase field is compared to the change in 

the phase field calculated by equation 3-12 and the smallest change in phase field is used 

for that time step. The thermodynamic equilibrium condition is based on the fact that 

solidification will not allow changes in concentration greater than that of the liquidus 

concentration for the given system temperature. If the concentration value of a ce11 

reaches the liquidus concentration, it is considered to be at an equilibrium at which point 

there is no driving force for that ce11 to re-melt or to solidify. In the present model the 

liquidus and solidus concentration cuves of the phase diagrams (Al-Si and Al-Cu) are 

approximated to be straight lines. 
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Figure 3-10: Phase Diagram of Al-Si-Cu, Isothermal Section at 955°C 

In order for a ce11 that has no solid fî-action start solidifjhg it has to have a neighbor that 

is completely solidified. This is taken into account in the present model by the neighbor 

fûnction. The neighbor h c t i o n  checks al1 cells that have one face in cornmon with the 

ce11 under study. If the cell under study has one of its six neighbon completely solidified 

then that ce11 under study is allowed to start solidification, othenvise, only changes in 

concentrations for both alloying components are computed. 

In order to compute the concentration values and phase field values near the walls of the 

control volume a boundary condition fllnction was required. The next section explains in 

detail how the model deals with the calculation of concentration and phase field near the 

walls of the control volume. 



3.8 Boundary Condition 

The present model assumes periodical boundary conditions near the walls of the control 

volume. in order to calculate the concentration values or cwvatures at the walls of the 

control volume one needs to know the phase field and concentration gradients at the wall. 

These gradients require information on concentrations and phase field values on cells that 

are outside of the control volume. Thus, mathematicaliy the model uses the concentration 

and phase field values at the opposite side of that wall. This creates a numerical effect of 

an infinte control volume. When analyzing the solidification of a dendrite nom sphere 

this situation works quite well. It is also used for the sidewalls of the control volume 

when analyzing the solidification of a dendrite fiom a flat plate with a perturbation. 

Periodical boundary conditions are not as effective when dealing with the ceiling of the 

control volume. When computing the concentration and phase field gradients at the 

ceiling of the control volume, the boundary condition function uses phase field values 

and concentration values that are two ce11 layers below the ceiling. in essence, the ceiling 

of the control volume behaves like a mirror. If we had used a periodical condition at the 

ceiling for a dendrite solidifjing fiom a flat surface, the effect would be the growth of the 

solid-liquid through the ceiling of the control volume. 

In the last section of this chapter we will describe the eEects of anisotropy and its 

influence when not taken into account in the simulation. 



3.9 Anisotropy Effects 

Anisotropy is an effect, which describes a matenal that has properties that differ in 

direction [12]. During solidification the dendrite can have directions of growth that are 

favored over others, this is w b t  is known as growth anisotropy [l 1. When simulating 

crystal growth the existence of a mesh (ce11 grids) dso  introduces an anisotropy effect. 

Any simulation that uses a grid as part of the model of crystal growth introduces an 

anisotropy effect on the growth. This effect of the mesh is considered negative and its 

effect can not be eliminated. It is considered a negative effect since in a physical world 

dendrites do not have the influence of a mesh during their groowth. To actually eliminate 

the influence that a mesh can have on the crystal growth is a substantial amount of work. 

One way to eliminate this influence on the growth is by rotating the mesh. This ensures 

that for every tirne step that the simulated c r y d  is dlowed to grow the orientation of the 

mesh will be on a different direction, thus elirninating a preferred growth direction. A 

disadvantage of this method is that the irnplementation fiom a prograrnming point of 

view is not easy. Another disadvantage, is that the computationai tirne required increases 

substantially, thus reducing the size of the dendrite that c m  be modeled and increasing 

the cornputer time required to model them. 

Al-Si-Cu alloys can form denciritic structures in which anisotropy effects infiuence the 

kinetics of the solid-liquid interface. These anisotropic properties influence the formation 

of the dendrite. It has been shown that dendrite form in preferred crystallographic 

directions as for example <O0 1 > for cubic crystal structure. The thermal and 
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compositional gradients as weli as the anisotropic effects detemine the growth direction 

of a dendrite. Our model is based on mass tramfer (compositional gradients) and 

anisotropy effects. 1 131 

Growth anisotropy was initially not taken into account by our model. Figure 3- 1 1 shows 

the effects of isotropic growth of a dendrite fkom a sphencal nucleus. 

O S ID la 1 S  W 
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Figure 3- 1 1 : Anisotropy Effects 

As it is seen in figure 3-1 1 the dendrite tip splits. III order eliminate this isotropic effect 

the model calculates the normal unit vectors components in the x, y and z directions. 



where 

gx is the gradient of the average phase field in x 

g, is the gradient of the average phase field in y and 

g, is the gradient of the average phase field in z. 

Sirnilarly, the normal unit vector components in y and z are calculated where the 

numerator changes for the gradient of the average phase field in y and z respectively. 

The mode1 then proceeds to calculate two angles. These two angles are the angles 

between the normal vector to the solid-liquid interface and the z and x direction 

coordinate system. These are mathematically calculated as follows. 

where 

phi ( ip )  is the angle between the normal to the interface and the z coordinate 

direction 

theta (0) is the angle between the normal to the interface and the x coordinate 

direction 

arccos is a mathematical fhction that returns the angle in radians. 

Once these angles are known the capillary undercooling is obtained as follows: 
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where 

r is the Gibbs-Thomson coefficient 

cos is the mathematical cosine fûnction 

phi is angle as calculated in equation 3-14 for ce11 i j,k 

theta is the angle as calculated in equation 3-14 for ce11 i j,k 

kijk is the solid-liquid interface curvature for ce11 i j,k. 

Equation 3-15, is the new value of the capillary undercooling that is used in caiculating 

the velocity of the solid-liquid interface. Once the effects of anisotropy where taken into 

account by our mode1 the splitting of the dendrite tip did not re-occur. Examples of these 

runs on dendrites growing fiom a perturbation of a flat surface will be presented in detail 

in Chapter 4. Simulations on a spherical nucleus where not continued because the amount 

of computer time required to produce a three-dimensional dendrite was considerably 

greater. A spherical nucleus will grow six very similar dendrite arms, since al1 conditions 

around the control volume are identical, Thus, the information provided by one of the 

main arms would be the same for al1 other anns. Thus, simulating the growth fiom a 

perturbation on a flat plate is equivalent to growing one of the main arms on a spherical 

nucleus and by doing so we Save computer t h e .  More details on these results are 

presented in chapter 4. 



4.0 Introduction 

This chapter presents the results of a few runs performed with our model. The results are 

anaiyzed and when possible compared to the results provided by Fisher and Kurz model 

[l]. A complete description of Fisher and Kurz model of dendrite growth is presented in 

Appendix "A". The tip radius for each nui is presented and the relationship between the 

grid size and the tip radius obtained are also presented. Resuits on the conservation of 

rnass test are shown in this chapter. 

4.1 Phase Evolution and Grid Size 

Several runs where performed under the following physical and material parameters: 

Physical Parameters: 

Grid Size: 1 Xe-008 m. 

No. of grids in i and j coordinate direction: 74 

No. of grids in k coordinate direction: 74 

Initial concentration of Silicon: 5%wt. 

Initial concentration of Copper: 5%wt. 

Constant temperature of the system: 873 
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No noise is added to the system 

Material Parameters: 

Kinetic Coefficient (m/(sSK)): 0.1 

Alloys Diffûsion Constant Liquid host (mA2/sec): 3e-009 

Alloys Diffusion Constant Liquid elernent 1 (mA2/sec): 3e-009 

Alloys Diffusion Constant Liquid element 2 (mA2/sec): 3e-009 

Alloys Gibbs Thomson coefficient (m*k): 2e-007 

Liquid slope of element 1 (K/0/0wt use negative sign convention): -6 

Liquid slope of element 2 (KMowt use negative sign convention): -3 

Solidus Slope of element 1 (W%wt use negative sign convention): -50 

Solidus slope of element 2 (W%wt use negative sign convention): -20 

Melting temperature of the host component (K): 933.3 

Periodical Boundary Conditions in i, j and not in k. 

A theoretical value of the dendrite tip for the above physical and material parameters 

where predicted using Dr. Artemev 2-D computer model. His model is based on Fisher 

and Kurz rnodel (Please refers to Appendix "A" of this thesis for m e r  explanation on 

Fisher and Kurz model). Dr. Artemev's computer model provides results on tip radius in 

a non-dimensional fom, while Phase-Evolution provides the results in a dimensional 

form. In order to compute the theoreticai tip radius (dimensionally) a MathCad 

spreadsheet was created An example of this spreadsheet c m  be found in Appendix "B". 

According the Dr. Artemev's computer model the theoretical tip radius was calcuiated to 

be approximately 5.1 E-7 m. As seen above, the grid size found under the physical 
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parameters was taken to be forty times smaller than theoretical tip radius. Using Techplot 

(Visualization software by Amtec Engineering, Inc) a cut of the 3-D simulation is 

presented in Figure 4-1. 

T'me = 2.7Wn68E-C sec 

Figure 4- 1 : Grid Size at 40 times smaller than the theoretical tip radius. 

The results of this test indicate that the ce11 size was too small for the gmwth to occur. 

The ce11 size for this run was 1.28e-008m. The time step computed according the Fourier 

number was: 6.2866E-11 sec. Thus, the changes in phase field are so iasignificant that 

the growth is controlled by numencal uncertainty rather than by the physics of the 

problem. As seen in Figure 4-1 in t h e  the perturbation starts to disappear. This does not 

mean that a ce11 size of 1.28E-008 can not be used, it just means that the initial nucleus is 
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smaller than the initiai criticai radius required for the perturbation to be unstable as 

described in Chapter 2. Under the same ce11 size with a larger initial nucleus the dendrite 

would have grown. 

Our second run was performed with a ce11 size that is approximately 20 times smaller 

than the theoretical tip radius under the same conditions. The results of the phase 

evolution are presented in figure 4-2. 

rime = O sec 

Figure 4-2: Ce11 size at 20 tirnes smaller than the theoretical tip radius 
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Under a ce11 size of 20 times smaller than the tip radius predicted by Fisher and Kun 

model, the ce11 is approximately 2.55E-8 m with a time step of 2.70938e-O 1 O sec. This 

size of ce11 size was also found to be too small for the nucleus to grow. 

When the ce11 size was set to be approximately 10 times smaller than the theoretical tip 

radius the results where found to be more interesting. At this ce11 size, the dendrite grew 

and it was possible to obtain pictures of the morphology and concentration profiles in 3- 

D. In order to analyze the tip radius a 2-D cut through the middle of the dendrite was 

performed and the curvatures at the tip were measured. Figure 4-3 presents the dendrite 

morphology as it evolved in tirne. 

Figure 4.3 : Dendrite growth with a ce11 size 10 times smaller than the theoretical radius 
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Figure 4-3 shows a 2-D cut of the dendrite morphology of Aluminum 5% Silicon 5% 

Copper alloys. The effective supersaturation taking into account both solutes is O. 1 1. The 

effective superstauration is obtained using equation 4-2: 

where 

Csi - ,n is the effective concentration of Silicon 

Csi - liq is the liquid concentration at the current temperature of the system 

k is the distribution coefficient [2]. 

The effective silicon concentration is computed as follows: 

where 

Cbulk - si is the concentration of silicon at tirne zero far away fiom the 

solidifjhg solid-liquid interface 

Cbulk - is the initial concentration of copper far away fiom the solid-liquid 

interface at tirne step zero 

mi - cu the liquidus slope of copper (straight line approximation) 

ml - si is the liquidus dope of Si (straight liae approximation) 

rngap-c, is the copper miscibility gap at the current system temperature. 



mgap,i is the silicon rniscibility gap at the current system temperature. 

From Figure 4-3, we can observe that in the initial growth (approximately 0.2 

microseconds) the dendrite tip takes a very needie shape like morphology. As the growth 

continues the tip essentially changes very little, but the sides of the primary tnink become 

bigger. The sides of the primary tnink provided sites for interface instability that lead to 

the formation of secondary arms. At approximately 0.6 microseconds, the dendrite has a 

very well defined morphology with primary secondary and possible sites for the 

formation of tertiary arms. The tertiary arms in our model are observed when the control 

volume is bigger. The model provides resuits that describe very well the coarsening 

effects of the secondary arms (unification of small secondary anns to f o m  one big 

secondary am). This is consistent with experirnental results. 

Figure 4-4: Actual dendrite morphology 



As it is seen in Figure 4-4 the biggest secondary arms are found at the bottom part of the 

tnink (lower portion of the figure), while at the top very few secondary arms are 

encountered. Figure 4-5 shows a threedimension representation of a single dendrite. 

Figure 4-5: 3-D dendrite morphology. 

Our cornputer mode1 as part of its output file provides the concentration profiles that we 

can graph. These profiles are presented in figure 4-6. 



Figure 4-6 Silicon Concentration Profiles 

At tirne zero a layer of 7 %wt. silicon was set on the first 10 ce11 layers, as seen in figure 

4-6A. This was done to avoid abrupt changes in the phase field durhg the transient 

penod. I f  this is not done, the flat surface around the dendrite could deveiop small 
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perturbations that will lead to other dendrite formation near the perturbation set by the 

model. These small perturbations can grow at a very fast rate and influence the dendrite 

morphoIogy of the dendrite we are interested in. By assigning a concentration layer near 

but not exactly the liquidus concentration of the alloy we slow down the transient growth 

period. This is done because the initial concentration layer is required to diffuse before 

solute is removed fiom the solid-liquid interface, allowing then, the growth of the 

nucleus. The bulk concentration was set to 5 %wt. Silicon while the initiai concentration 

layer was set to 7% wt. Silicon. Thus, during the fmt iterations the concentration layer is 

d i f i e d  fiom an area of high concentration (7% Silicon) to an area of low concentration 

(the bulk area set to 5% Silicon). As the celis are solidified, they are assigned a solidus 

concentration value at the system temperature. The solidus concentration value is 

calculated by approximating the solidus line of the of the aluminium silicon phase 

diagram by a straight line. Near the dendrite tips the concentration contour lines are a lot 

closer to each other. The proximity of these lines indicates the regions of higher 

concentration gradients. In these regions of hi& concentration changes is where the 

growth occurs faster due to faster removal of solutes. The concentration profiles of 

copper are very similar to those of silicon. The concentration profiles of copper are 

shown in figure 4-7. 



Contour Lima for A and b 

Contour Lines for frama C 6 0: 

Figure 4-7: Copper Concentration Profile 

The concentration profiles of copper have the same shape of curves as the concentration 

profiles of silicon. The initiai concentration layer at time zero is of approximately 5 . 5 % ~  

copper while the rest of the system was set to have a bulk concentration value of 5 % ~  

copper. Figure 4-7D shows concentration contour lines. An interesting fact occurs at the 

top with the concentration contour lines which is that they go through the roof of the 

control volume, while at the side wails they are at the same height. This is due to the 

periodical boundary conditions at the sidewaiis of the control volume. If the dendrite 

growth had been started fiom a homogeneous nucleus (at the center of the control 



volume), then al1 the walls would have been setup with a periodical boundary condition. 

The roof and the floor of the control volume are setup with a constant concentration value 

of 5 % ~  copper. 

Dendrite morphologies are not as difficult to obtain as one would Uiitially think. 

However, to obtain dendntic morphologies that actually are produced by proper 

mathematical description of the physics behind the problem is a challenge al1 in itself. 

For this reason a senes of tests, were performed in order to assure that the dendntic tip 

radius obtained fkom our mode1 was independent of the grid size. The results are 

presented in the following graph. 

Graph 4- 1 : Tip Radius vs. Grid Size 
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The resuits shown on -ph 4-1, indicate that the tip radius at diverse contour levels d l  

converge to a single value as the grid size is reduced. When the grid size is approximately 

equal to the theoretical value predicted by Fisher and K m  Model the tip radius increases 

exponentially. The tip radius at several contour levels where measured using a graphical 

visualization tool (Techplot). 

The numencal data presented in Figure 4-7 is presented in Table 4-1 : 

Table 4-1: Grid Size Vs Tip Radius data at different contour lines. 

Gdd Ske 0.2 to 0.05 0.4 to 0.2 0.8 to 0.4 1 .O to 0.8 1 .O to 0.9 

10 Greater 5.0OE-06 1.971 € 4 5  1 -1 20E-05 6.422E-06 4.572E-06 4.148E-06 

Equal to 5.00E-07 2.206 € 4 6  1 -160E-06 6.735E-07 4.880E-07 4.607607 

2.5 Smaller 2.00E-07 8.850E-07 4.740E-07 2.740E-07 1 -860E-07 1 -770E-07 

5 Srnaller 1 -00E-07 4.677E-07 2.356E-07 1 -334E-07 9.678E-08 9.206E-08 

8 Smaller 6.40E-08 2.842E-07 1.483E-07 8.472E-08 6.045E-08 5.660E-08 

10 Smaller 5.1 0E-O8 2.190E-07 1.130E-07 6.600E-08 4.670E-08 4.460E-08 

Note: Al1 values in meters. 

A cornparison of the percentage difference between the cellular mode1 at marginal 

stability and Fisher and Kurz Model is presented in Table 4-2. 

Table 4-2: Parabolic Model vs. Cellular Model. 

Grid Size Marginal Stability Cellular Model 96 Diffemnce 

Panbolic Tip Radius Tip Radius 

10 Greater 5.10E-07 4.1478E-06 -713.30 

Equal to 5.1 O€-07 4.6071 E-07 9.66 

2.5 Smaller 5.1 OE-07 1.7700E-07 65.29 

5 Smaller 5.1 OE-07 9.2056E-08 81 -95 

8 Smaller 5.1 O€-07 5.6596E-08 88.90 

10 Smaller 5.10E-07 4.460OE-08 91 .25 

Note: Al1 tip radius in meters. 



As it is seen in Table 4-2, al1 values are within 100% of the theoretical parabolic tip 

radius. The closest measurement of tip radius occurs when the grid size is equal to the tip 

radius. One of the differences with Fisher and Kurz model (Parabolic tip radius) is that 

they assume that the tip of the dendrite preserves its parabolic shape. This is done for 

simplification reasons, since the parabolic equation preserves its parabolic shape as the 

dendrite grows. A dendritic tip radius does not necessarily preserve a parabolic tip. 

Another test that was performed to detennine that our mode1 was in agreement with the 

correct physical description was to check that the law of conservation of mass was 

satisfied. This will be described in more detail in the next section. 

4.2 Conservation of Mass 

The law of conservation of mass States that for a h e d  control volume the rate of mass 

with respect to t h e  is invariant. Thus, the total mass in the system at time zero is equal to 

the total mass at time infinite as long as the control volume under study remains closed 

and no leaks occurs. 

In our model we created a conservation of mass function. At t h e  step zero the 

conservation of mass fùnction takes the liquid concentration of silicon and multiplies it 

by liquid fiaction in each cell. At the sarne time step we take the solid concentration of 

each ce11 and multiply it by the solid fraction of each cell, the summation of these two 

terms provides us with the total concentration of silicon and copper in the system. 

Mathematically this can be expressed as: 

*=Mar 

Concentration -total = & k . C i  -,,, + (1 - gik ) CL _,, (4-4) 
*=O 



Every time the model saves the information to the hard disk, it perfonns the siunmation 

expresscd by equation 4-4. We performed this test for a ce11 size 10 times smaller than 

the theoreticai tip radius estimated by Fisher and Kurz model. The results of this test are 

presented graphed in graph 4-2. 

Graph 4-2: Conservation of mass vs. dendrite height 

Graph 4-2, indicates that the total mass is preserved within 1.5 % of the total initial mass 

within the control volume. As the dendrite grows we start having mass leakage and some 

mass is lost due to the boundary conditions established at the roof and bottom of the 

control volume. 

Graph 4-3 shows the total mass leaked out of the system vs. the number of iterations 

performed by the model to develop a complete dendrite. 



Percentage of Mass Lost Vs. Iteration No. 

-.- 
Itmntlon No. 

j-t%olculost - e % o f s i ~ a t j  

Graph 4-3 : Mass Leakage vs. No. of Iterations 

In graph 4-3 it is possible tu see how as the number of iterations increase the percentage 

of mass leaked out of the system increases exponentially. At less than thirty thousand 

iterations, the percentage of mass leaked is due to rounding off errors. Between thirty 

thousand and fi* thousand iterations the concentration profiles stan going through the 

roof of the control volume. At approximately fifty thousand iterations, the dendrite tip 

starts going through the roof of the control volume, which is when the system starts 

loosing a lot of mass and thus breaking the law of conservation of mas.  This is not of 

concem because the tip radius is measured before the concentrations profiles start 

irespassing the roof of the control volume. 

Another parameter that was required to analyze was the growth velocity of the dendrite. 

The results are described in more detail in the next section. 
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An important parameter that was verified to determine that the growth is consistent with 

Fisher and Kurz model was the growth velocity of the dendrite. The growth velocity is 

descnbed by a non-dimensional parameter known as the Peclet number: 

where 

rt,, is the tip radius in (meters) 

D is the difiksion constant (mS/s) 

v is the velocity ( d s )  [2]. 

According to Fisher and Kurz's model the peclet nurnber for an effective supersaturation 

of 0.1 1 ( 5 % ~ .  Silicon, 5% wt. Copper and 90% Al) is 0.1 1. Table 4-3 describes the 

relationship of the Peclet number for a grid size that is approximately ten times smaller 

than the theoretical tip radius. 

Table No. 4-3 

Approximately 10 times smaller grid size than the theoretical radius 

Tirne Iterations Grid Size Contour Tip Distance Velocity Peclet 

Level Radius Number 

(sec) (meter) (ml (ml (ml*) 

5.20E-05 48000 5.1 0E-08 0.2 to 0.05 2. 19E-W 2.9ôE-06 0.057 2.08 

0.4 to 0.2 1.13E-07 2.96E-06 0.057 1 .O7 

0.8 to 0.4 6.60E-08 2.96E-06 0.057 0.63 

1.0 to 0.8 4.67E-08 2.9ôE-06 0.057 0.44 

1.0 to 0.9 4.46E-08 2.96E-06 0.057 0.42 



From Table 4-3, it is possible to see that the peclet number varies significantly between 

contour levels for the same dendrite. This is because the tip radius varies significantly 

with the fiaction of solid in each cell. The velocity presented in table 4-3 is an average 

velocity. It is not the local velocity at the tip. The average velocity is obtained by 

determinhg the height of the nuclei and the height of the dendrite at the time step t h  the 

dendrite was well developed but not touching the top wall of the control volume. This 

provides us the total distance grown by the dendrite over a period of tirne- Dividing the 

total grown distance by the total tirne provides us with an average velocity. The tip radius 

is also the average radius at the tip of the dendrite. Techpiot outputs at a specified contour 

level the approximate curvatures at specified number of points (set by the user) on the 

solid-liquid interface fkom which we can calculate the average tip radius. These two 

parameters and the diflhion constant provide the peclet number. The peclet number 

provided by our model is considerable larger than that provided by Fisher and Kurz 

model. One possible cause of this difference between the peclet number detennined by 

our model and that provided by Fisher and Kurz is that our tip radius is not assumed to be 

of a parabolic shape. 



Graph 4-4: Dendrite tip radius vs. growth rate 

Dendrite Tip Radius M. Gmwth Rate 

Graph 4-4 shows the relationship of the growth rate of  the dendrite with respect to its tip 

radius. As seen in this figure as the growth rate decreases the dendrite tip uicreases. 
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The last chapter of this thesis presents the conclusion of our research and results. It also 

presents some possible future work required to obtain a better understanding of the 

results and possible irnprovements to the model. 
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Cixmta 5: Conclusion & 

5. O Introduction 

Chapter 5, is the final chapter of this thesis. This chapter presents the conclusions of our 

work on dendrite growth using the cellular model. The chapter outlines possible areas 

that could be examined to increase the accuracy and performance of our dendrite growth 

model. 

5.1 Concl usions 

One of the important aspects of our research was the use of the cellular model to simulate 

the growth of a dendrite. The results presented in this thesis allow us to conclude that the 

cellular model is a feasible way to simulate dendrite growth in three dimensions. The size 

of the control volume that we simulate is limited by the computer system running the 

simulation and not by the complexity of the solid-liquid interface of a dendrite. The 

results show important results such as the formation of secondary, and in some cases, 

tertiary arms. The correct choice of ce11 size is also of great importance and has to be 

carefully picked by means of sirnpler analytical techniques before valuable computer 

time is wasted. It was shown that simuiations with ce11 sizes that are larger than the 

theoreticai tip radius predicted by Fisher and Kurz model can aiso reproduce dendrite 

morphologies with a tip radius that is in complete disagreement with theoretical and 

experimental results. 



Another important aspect of the results presented by this thesis is how the model can 

predict the concentration profiles around the dendrite for a tertiary system. This is 

important because it allows us to see the influence of a third alloying component on the 

growth of the dendrite (solute undercooling). 

One of the most challenging aspects of the model was in determining the curvature of the 

solid-liquid interface. The use of the "correct" weight factors for determining the average 

phase field fkom which curvature of the solid-liquid interfaçe is calculated showed the 

influence that capillary undercooling has on dendrite growth. The results show that the 

use of the "sphere test" in the determining the correct weight factors is not necessarily the 

best test to use, since it can produce weight factors that produce average solid-liquid 

interfaces that are not representative of the actual interface morphology. 

This thesis showed how anisotropy plays an extremely important role on dendrite tip 

morphology. Not taking anisotropy into account would have resulted on the splitting of 

the dendrite tips, thus prohibiting the cornparison of our model to Fisher and K m ,  or 

other analytical solutions. 

5.2 Future Work 

The mathematical and computational model described in this thesis can be improved in 

many ways. In this last section of the thesis it is out intention only to mention a few of the 

ways that the model can be improved. 



The curvature function can be substantially improved by determining if the weight factors 

used are the most optimum in the analysis of dendrites. The development of curvature 

test that describe the curvature not only of spheres but of dendrite-like structure for which 

the exact cwature is known could be developed and set as a standard problem set to 

serve as a guide h e  in detennining the accuracy of curvature functions. Other methods 

(mathematical approximation) for calculating curvature could be easily implemented into 

our model by replacing the curvature function in Phase Evolution. 

The model can be modified to take into account temperature variations through the 

development of the dendrite. Runs where the temperature is not maintained constant but 

that is constantly dropping at a fix rate c m  be easily implemented. The use of a constant 

temperature &op in the model would provide results on dendrite tip that are more 

realistic with what is seen in the real physical world. 

Further analysis of secondary ami spacing can be also examined. Analytical results 

provided by Fisher and Kurz can serve as a bais of cornparison to the results provided by 

our model. 

At some point in tirne, during the development of future work, experimental data that 

provides physical results that validate our computer model will be required. Experimental 

anal ysis wiil provide insights into other physical parameters that are required to be 

modeled and that could improve the accuacy of our computational models. 
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Fisher and Kun M d  of D d t e  G m t h  
in Uiuihooled Alloy Melts. [ I l  

1. Introduction 

The objective of this appendix is to describe and explain the mathematical relationship 

that descnbes the evolution of a dendrite tip in an alloy. Fisher and Kurz's model of 

dendrite growth is used as a cornparison and guideline to the results obtained by the 

ceIlular model (Phase Evolution Program) described in this thesis. 

2. Extremum vs. Marginal Growth 

Figure B-1 shows the relation of the growth rate vs. tip radius. This figure shows the sum 

of the capillary and diffusion effects. As it is seen in figure B-1, the figure shows a 

maximum point indicating the existence of a maximum growth rate with a specific tip 

radius &). This value of tip radius &) represented a unique solution in determining the 

value of the tip radius of a dendrite, since the derivative of the growth equation set to zero 

would provide a unique solution. 



Figure B-1 : Growth Rate vs. Tip Radius 

It was not until 1977 when Muller and Knimbhaar argued that the dendrite grows at the 

limit of stability. This is represented in Figure B-1 as the R, point. This stability criterion 

is known as the marginal stability cnterion. Mathematically it is represented by equation 

(B- 1 ): 

where 

R, is the tip radius at the marginal stability criterion, 

hi is the stability limit. 

Fisher and Kurz's mode! compute the total undercooling as a function of the thermal. 

solute and capillary undercooling. Thus, in order to find the tip radius according to the 

marginal stability criterion one would need to determine the total undercooling. The total 

undercooling is described by equation B-2: 



where 

ATt is the thermal undercooling, 

ATc is solute undercooling, 

ATr is the curvature undercooling and 

AT is the total undercooling 

The thermal undercooling in Fisher and Kurz mode1 is represented as a function of the 

Ivanstov solution for a paraboloid dendrite tip: 

where 

IVt) is the Ivanstov hc t ion .  

Pt is the thermal Peclet number 

et is the thermal undercooling (Ahflc, where c is the volumetric specific 

heat and Ahr is the latent heat of fusion per unit volume.) 

The Ivanstov solution is mathernatically expressed as: 



where 

P is the Peclet nurnber 

Simiiarly the solute undercooling is described mathematically as: 

AT, = mC, - (1 - A(<))  (B-5) 

where 

Co is the initial alloy concentration 

rn is the liquidus slope 

A m  = ( 1 - P I ~ I - ~  

The last term in equation 8-3 is the capillary undercooling. The capillary undercooling is 

deterrnined using equation B-6: 

where 

r is Gibbs Thomson coefficient 

R is the tip radius. 

Equation B-2 to B-6 defines the total undercooling. These equations are not enough to 

find a unique soiution to the problem of determining a specific radius to a specific total 
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undercooling value. This is where the stability criterion plays an important role. The 

stability criterion developed by Langer and Muller-Knunbhaar provide a solution which 

results are found to be very close to experimentd results. 

Equation B- 1, proposed that the tip radius is equal to the wavelength of a perturbation in 

a planar solid-liquid interface. The stability limit of the perturbation is descnbed by 

equation B-7. 

where 

r is the Gibbs Thomson Coefficient 

4 is the degree of constitutional undercooling. 

Using equation B-1 and B-7 one determines that the tip radius of the dendrite is 

computed as: 

where, 

mG, is the liquidus temperature gradient 

G is the imposed temperature gradient. 



As seen in equation B-8 the degree of constitutional undercooling is the difference 

between the liquidus temperature gradient (mGc) and the temperature gradient irnposed 

at the interface (G). Thus, as long as the liquidus temperature gradient is greater than that 

of the temperature gradient imposed at the interface the perturbation will grow. 

A flux balance determines the concentration gradient (Gc) in fiont of a perturbation. 

Mathematically ttus flux balance is s h o w  in equation B-9: 

where 

k is distribution coefficient, 

Cl is the liquid concentration at the solid-liquid interface (perturbation), 

V is the growth velocity of the perturbation, 

D is the difisivity constant, 

Gc is the concentration gradient. 

Using the Peclet number and isolathg velocity in tenns of the Peclet number one obtains: 

where 

D is the diffiision constant, 

Pc is the Peclet number 



R is the tip radius. 

Inserting equation B-10 into equation B-9, one then obtains the concentration gradient 

ahead of the tip radius as: 

where, 

Ci is the liquid concentration which can be expressed as a function of the 

solute supersaturation (Ci = Co/( 1 -Supersahiration( 1 -k))) 

R is the tip Radius, 

P, is the Peclet number 

K is the distribution coefficient. 

Now that the concentration gradient ahead of the tip radius, the temperature gradient 

ahead of the dendrite tip has to be also defined. The temperature gradient has the same 

structure as that presented by equation B- 1 1. Thus, the temperature can be 

mathematically expressed as: 

where 

Pt is the thermal Peclet number 

R is the tip radius, 



C is the volumetric specific heat 

Ahf latent heat of fusion per unit volume. 

The temperature gradient is determined not only on the liquid phase but also at the solid 

phase. Assurning a sirnilarity in the thermal conductivity between the solid and the liquid 

phase (Ks = Ki), and assuming that Ivantsov dendrite is isothermal it is determined that G 

(bar) is half of the temperature gradient in the liquid phase ahead of the interface. 

Thus the tip radius can be expressed as: 

where 

.4(Pc) = 1 /[ 1 -( I -k)I(P,)] 

K is the equilibxium distribution coefficient, 

M is the liquidus slope 

P, is the concentration Peclet number 

Pt is the thermal Peclet number 

et is the thermal Peclet number 

Co is the is the initial alioy concentration 

r is the Gibbs Thomson coefficient 



From analyzing equation B-13, the only unknowns are the Pt and Pc. The solute Peclet 

number and the thermal Peclet number are related by the ratio of the thermal to mass 

transport d i fh ion  constant as shown in equation B- 14. 

LI PC = Pt . -  (B-14) 
D 

where, 

a is the thermal difisivity, 

D is the mass difision constant. 

The only unknown is then the product of VR (Peclet number). The velocity and the tip 

radius are related as show in Figure B- 1, thus for eveq velocity there is a specific tip 

radius for a given supersaturation. Experimental results show that the tip radius and the 

velocity occur at the marginal stability criterion or close to that point. 





Input Parameters and Results of Andreis Mathematica code: 

Input Parameters: 
Temperature := 873.- 273.15 In Celsius 
rn leu :=- 2.6 

Copper Liquidus Slope 
k := 0.13 Distribuition coefficient 
rn -i :=- 6.59 

Silicon Liquidus Slope 
C := 5 Bulk Concentration of Copper 

C := 5. Bulk Concentration of Silicon 

rn -i :=- 50.30 
Silicon Solidus Slope 

m -. :=- 19-85 
Copper Solidus Slope 

D := 3- 1 o - ~  Diffusivîty Coefficient 

Calculation of %wt of Si: 
In Liquid state: 

. - (Temperature - 660) 
~ i < ~ s i  .- X ~ i ~ ~ i  = 9.127 

" I s i  

.- (Temperature - 660) 
L~<LCU .- X = 23.135 

1-cu 

In Solid State: 
,- (Temperature - 660) 

SO-i '- XSolri = 1.196 
s-si 

.- ( Temperature - 660) 
soi-CU O- Solcu = 3-03 

s-CU 

Calculation of Miscibitity gap: 

Miscbxap-si := X ~ i ~ ~ i  - X so l s i  Miscbgap-si = 7.932 

Miscbjap-CU :=X ~i~~~ - Solcu Miscbmp-CU = 20.104 

Calculation of Effective Bulk Concentration: 

Input Parameters: 

Calculation of Supersaturation for Silicon & Cu: 



Effective Supersaturation: 

Supersaturation-effective 

Supersaturationeffective 

Changing Crom Non Dimensional values to dimensional values: 

Input parameters fiom Andreis Code: 
R := 133.247 

Non Dimensional Tip Radius 

R 

Curv = 7.5051c3  
Non Dimensional Curvature value 

Non Dimensionai Velocity 

Gibbs-thomson 
Length Scale Ic := -9 Ic = 3.82610 

; - Miscbsp-si .m 1 ,i I - 

Thus: 
-7 tip-radius := lc-R tip-radius = 5.098 10 

Thus: Curvature := 6 ' Curvoture=1.96~10 
tip-radius 

Velocity Scale 
- D-Miscb_gap-si .rn 

Vc := - Vc = 0.784 
Gibbs-thomson 

,- ( Velocity-tip-tip-radius ) 
Theoretical Peclet Number: Pc .- 

2.D 

Experimental Peclet Number vel-exp := 0.0257 14 









Phase Maker - Appendix C 

Programmer: Marcias J. Martinez 
Date: July 24th 1998 
Supervisor: A. Artemev 
Narne of the Function: Phasemaker 

Purpose: 
The purpose of this function is to create a phase field. The location of the center of this phase field can be set by the user to be at the center or at the corner of the 
control volume The phase field is created in order to test the curvature function. The values of the phases are between O and 1. A phase value of O represents a 
completed liquid cell while a phase value of 1 represents a completely solidified cell, 

The Phase field is created by analyzing a set of random number at every cell. The random number locations are compared to the specific radius of the sphere (set by 
the user). If the a point is within the radius is considered a salid (1), while outside of the radius is considered a liquid (O). The fiaction of liquid to solid (points wiîhin 
to outside the radius) is considered the phase fiaction. 

Modification of October 3 1 1998, 
We included the posbility of creating a flat plate phase field with a disturbance of the middle of the plate. 

Modification of Nov 23 1998 

Since the phase evolution mode1 seems to be providing propper results 1 decided to have the phase maker be able to create a phase that had different number 
of cells in 1, J, K So that K could be larger (so that the dendrite have space to grow) while the 1 and J directions are not necessarily as large. 

\ 
Modification of Nov 27 1998 

We added al1 the material parameters that phase evolution uses to phase maker, since that way we can have them al1 read as part of an input file. 



Phase Maker - Appendix C 

Modification of March 24th 1999 
I needed to add a variable to this program so that 1 can change the width of the ceIl from 1 cell to a 3 cells width. */ 

Il INITIALIZATION OF FILES 

ofstream fout("phase.datU); Il Compatible file used to be read by TechPlot 
ofstream curvout("phase.in"); Il The actual phase field file to be read by the curvature function 

if(! fout) ( 
tout« " Cannot open output fileùi"; 

return 1; 
1 
if(!cwvout)( 

c o u t e  " Cannot open output fileh"; 
retum 1; 
1 

// VARIABLE DECLARATION 

int i; 
int j; II 3-D integer for each cell 
int k; 
int p; Il number of iterations; 
int max-ij, max-k; 

float x, xrand; 11 The absolute x- coordinator of a point wrt to the origin of the control volume 
float y, ymd;  !I The xrand represent the random generator position of a point with respect to its cell, 
float z, mnd; 

int liquidcounter; II Number of points that are considered liquid within a ce11 
int solidcounter; II Number of points that are considered solid within a cell 
int points; 
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Phase Evolution - Appendix C 

void coiiserv~mass~function(doub1e gzone-new[MAX-SIZE][MAX-SIZE][MAX3SIZE],double 
ct-liqelel -new[MAX-SIZE)[MAX-SlZE][MAXS]ZE], 

double ct-liqele2-new[MAX-SIZE][MAX-SIZE][MAX-SIZE], alloy alloys, 
int max-ij, iiit max-k, int counter); 

void Averagephase(doub1e gzone[MAX-SIZE][MAX-SlZE][MAX-SIZE], float gavg[MAX-SIZE ][MAX-SIZEI(MAX-SlZE],int max-ij, int max-k, 
int index[6], int Boundary-boolean); 

void velocity_function(alloy alloys, int max-ij, int max-k, float Temperature, 
double ~~N~~~~~~~~~~[MAX-SIZE][MAX~SIZE][MAX-S~ZE], 
double velocity[MAX-SIZE][MAX-SIZE][MAX-SlZE], 
double ct-liqele l [MAX-SlZE][MAX-SlZE][MAX-SIZE], 
double ct_liqele2[MAXSIZE][MAXSlZE][MAX-SIZE), 

int velocityflag, int counter, int headerflag, 
double gzone[MAX-SIZE)[MAX-SIZE][MAX-SIZE]); 

void curvature-fùnction (double gzone[MAX-SIZE][MAX-SlZE][MAX-SIZE], float gavg[MAX-SIZE][MAX-SIZE][MAX SIZE], 
doubk curvatureanay[MAX-SIZE][MAX-SIZE][MAX-SIZE int index[6], int max-ij, int mai-k, int points, 
float delta, float radius, alloy alloys, int Boundary-hlean,float 

curvat urearray~old[MAXcurvaturearray_old[MAX_SIZEIIMAX_SIZEI[MSIZE)[MAXIS1ZE][MAX~SlZE] ); 

void Boundary-Condition(int i, int j, int k, int index[6], int max-ij, int max-k, int Boundary-boolean); 

int neigbour-function(double gzone[MAX-SIZE][MAX-SIZE][MAXXSIZE], int i, int j, int k, int index[6], int max-ij, int man-k,int 
Bounday-boolean); 

float time-step-function(fl0at const delta, alloy alloys); 

void filesave-hnction(int counter, int i, int j, int k, int max-ij, int max-k, double gzone[MAX-SlZE][MAX-SlZE][MAX-SIZE], 
double gzone-new[MAX-SIZE][MAX-SlZE][MAX-SIZE] double curvaturesrray[MAXSIZE][MAXISIZE][MAX_SIZE], 
float gavg[MAX-SIZE](MAX-SIZE)[MAX-SIZE], double velocity[MAX-SIZE][MAX-SIZE]IMAX-SlZE], 
float Totaltirne, float tirne-step, int tecplotflag, alloy alloys, 



G a 3 2  a .s -2 s 
- 0 0  
Cu- -- _ _ 



Phase Evolution - Appendix C 

float theta-function(doub1e gzone-ncw[M AX-SIZE][MAX-SIZE][MAX-SIZE], int x, int y, int 2); 

int Temperature-range(alloy alloys, float Temperature, double ct-liqelel [MAX-SIZE][MAX-SIZE][MAX-SIZE], 
double ct-liqele2[MAX-SIZE][MAX-SIZE][MAX-SIZE]); 

void ShiA-dom-function(double gzone(MAX-SIZE][MAX-SIZE][MAX-SlZE],doub!e gzone-new[MAX-SIZE][MAX-SIZE][MAX-SIZE], 
double ct-liqelel-new[MAX-SIZE][MAX-SlZE][MAX_SIZE], double 

ct-liqele I [MAX-SlZE][MAX-SIZE][MAX-SlZE], 
double ct-liqele2-new[M AX-SIZE][M AX-SIZE][M A X - S I E  double 

C~~I~~~~~~[MAX~SIZE][MAX~SIZE][MAX~S~ZE], 
int counter, int max-ij, int max-k); 

void noise-fùnction(doub1e gzone[MAX-SIZEJ[MAX-SIZE][MAX-SIZE], int niax-ij, iiit max-k); 

maino ( 
/* Programmer: Marcias J .  Martinez 

Start up Date: August 1 7 1998 
Last modified: Nov 5th 1998 
Version: 1.00.00 1 
Supervisor: A. Artemev 
Name of the function: Phase Envolution 

Purpose: 
To detennine the morphology of a dendrite, having an initial concentrations and phase field. 
The evolution of the dendrites morphology is based on flicks diffusion laws. 

Modification of Nov 41th. 
We found that the cells duc to the neighbouring funciton where bcing allowed to solidifj 
without these having a fully crystallized neighbour. So we modified this function. 

Modificaiton of Nov 5th 











Phase Evolution - Appendix C 
cause the concentration to fluctuate and could provide negative concentrations which is 
physically impossible. Thus we changed it to 0.99999 

All these changes where takeii into account during this revision of Phase Evolution. 

Modifications of February t 8th 

1 ,  From the modification of Febraury 8th it was found that the concentrations fùnction 
was not completely correct. Prof, Artemev found that 1 was neglecting the component 
transport. From the discusion we had February 17th we needed to redo the concentrations 
function. 
Phase Evolution 26 is basically different from Phase Evolution 2. in that this error 
is solved. 
This will allow us to run the simulation at a much faster rate. In other words at a bigger 
time step. 

The Transport equation used was Equation (3) of his article. 

Modification of March 3rd 99 

1. When Analyzing the tip raidus 1 realized that the curvature value that 1 was outputing to the file 
had the anysotropy factor already taken into account. Thus 1 had to creat a curvature array old 
that does not include the anisotropy values. This will allow me to compare tip radis with 
the analytical data obtained from Andreis Code. 

Modification of March 24th 99 

1.  1 needed to add an extra output file of information at the velocity 
equation in order to deterrnine what factors affect this equation, to see 
what are the causes that the dendrite tip is growing in a needle shape form. 

Modification of March 3 1 99 
1. Prof. Artemev asked me to do a nin with a single AI-Si only and the problem 

is that the program gave negative concentration in the Cu array. 
So we add a flat where EL2-flag is equal to one then we calculate the 
concentration profile of this element, otherwise we don't. 
Also we make sure ihat the liquius slope of the second compoent are zero 
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to avoide it affectitig the velocity.. 

Modification of Aprii 2nd 99 
1. Prof. Artemev did not agree with the fact of adding the e2-flag.. 1 explained 

that if wc did not do that we would obtain a negative concentration in Cu due 
to the change in the phase field and he ageed. So instead of using the Cs(Temp) 
1 will be modifying the concentration function and replacing Cs by (1-k). Where 
kdistr (to distinguish it from counter k) is distribuition coefficient and has a value 
of0.13. 

Modification of April 5th 99 
1. With PE-V2 we eliminate the mass transport to cells that only have a point 

or a line in common wit h the center cell. 
2. With PE-V2-2.exe we add another feature, this feature is that the first 10 cells 

of the CV. acutally have the liquidus concentration assigned ta them. 

Modification of April9th 99 
1. After analyzing some of the cells, we realized that it seems that the code 

is breaking the law of conservation of mass. This is because at some cells 
the ijk value is not being reduces, which is extremely strange. Thus, it is 
possible that this is occuring because of floating to double values of the 
variables. The changes will be made to the Concentration fùnction. 

Modification of April2 1 st 99 
It was seen with previous runs that in terciary system one could peak the values of 
concentration that would produce remelt. When the program is not capable of taking into 
account the remelting of completely solidified cells then the dendrite does not grow nor 
does it disaappear. Remelting of cell that are partially solidified is possible but not of 
those that are completely solidified. Thus I added the option that the 1st 10 layers 
one could peak concentraitons based on temperature (liquidus concentration or based on 
concentration values submitted by the user. 

Modification of May 3rd 1999, 
Addition of an extra function that basically computes the total mass every n number 
of iterations. That way we can calculate if the conservation of mass is being violated 
This is done by multiplying each cell with the solid fiaction by its corresponding 
solid concentration and the liquid fiaction by the liquid concentration and then 
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II  Variable Declaration for Filesave-function 
char fileName[40]; 
char *baseFileNarne="newphase"; II Base File Name 
char stop; 

Il Editing of file name command. 
sprintf (fileName, "%s%â.txtW, baseFileName, counter); 

Il Opening of file rime 
i fstream retrieve; 
retrieve.open( fileName, ios: :app); 

if(!fileNarne) { 
cout« "Can not open file hlt; 
II Handle error 
cin >> stop; 
exit (O); 

)Il End if of filename 

11 Output to the screen that we are in recovery mode. 
cout << "PHASE EVOLUTION IS RECOVERING FROM AN OLD RUN" « "\nu; 

Il At this point we start reading the data in and introducing it in the respective 
II variables 

retrieve >> recover-hl>> "h"; 
retrieve >> recover-hl >> counter >>"\nu; 
retrieve >> recover-hl>> Temperaîure >> "h"; 
retrieve >> recover-hl» Total-time >> "W; 
retrieve >> recaver-hl>> time-step >> "\nu; 
retrieve >> recover-bool>> alloys. kineticçoeffcient >> "\nW; 
retrieve >> recover-hl>> alloys.Gibbs-thomson >> "\nW; 
retrieve >> recover-bool>> alloys.mlelel >> "in"; 
retrieve >> recover-bool>> alloys,msele 1 >> "\nt'; 
retrieve >> recover-bool» alloys.msele2 >> "\n"; 
retrieve >> recover-hl>> alloys.mlele2 >> "h"; 
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retrieve >> cuwaturearray-oId[i]ljl[k]; 

retrieve >> velocity[i]u J[k]; 
retrieve >> ct-liqelel [i]u)[k]; 
retrieve >> ct-liqele Igew[i]~][k]; 
retrieve » ct_liqeIe2[i]~][k]; 
retrieve >> ct-liqele2new[i]~]lk]; 

) // end for for recovery loop 

recover-hl= 'R'; // This is to make sure that it does not go in and ask for the information 
// again 

il Output to the screen that we are in recovery mode. 
cout << "PHASE EVOLUTION IS RECOVERING FROM AN OLD RUN" << "kt"; 
cout << "Press the number one to continue: "; 
cin >> stop; 

)// End if for recover_bool= R 

// INPUT PHASE FIELD 
// The Initial phase field is taken fiom another program known as PHASEMAKER.EXE 
// This initial field is then read into the program fiom phasein.txt file 

if (recover-hl != 'RI) { 

ifstream indata; 
indata.open("phasein.txt"); //open file for input 

if (! indata) { 
tout<< " Connot open fileùi"; 
// hanâlc error 
cin >> stop; 
exit(0); 

) // End if 

// Input of the initial four variables in the Phasein file into its corresponding variables 
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II cout << "Solidus Slope of element 1 (W%wt use negative sign convention): " << alloys.msele1 <<"\nu; 

prop << "Solidus Slope of element I (K/%wt use negative sign convention): " << alloys.msele1 <<"\nu; 
indata >> alloys.msele2; 

// cout << "Solidus siope of element 2 (K/%wt use negative sign convention): " << nlloys,msele2 <<"\n"; 
prop << "Solidus dope of element 2 ( W w t  use negative sign convention): " « alloys,msele2 <<"\nu; 
indata >> alloys.Temp-melt-host; 

// cout << "Melting temperature of the host component (K): " << alloys.Temp-melt-host <<"\n"; 
prop << "Melting temperature of the host component (K): " << alloys.Temp-melt-host <<"\n"; 

//THIS SECTION WE WOULD NEED TO iNCLUDE AS VARIABLES IN THE INPUT FILE 
indata >> fileint; 

//tout << "Every how many iterations would you like to safe the information: "<< fileint "\n; 
prop << "Every how many iterations would you like to safe the information: "<< fileint<<"\nW; 

indata » Boundary-boolean; 
llcout << "Boundary Conditions <O= PERlODICAL IN I,J BUT NOT in K ( I=ALL PERIODICAL? "<< Boundary-boolean <<"ùit'; 

prop « "Boundary Conditions <O= PERlODICAL iN I,J BUT NOT in K ( I=ALL PERIODICAL? "cc Boundary-boolean «"\nu; 

indata » Matrix-boolean; 
//tout "Would you like to Save the phase field in matrix form: <I=Nol2=Yes>" << Matrix-boolean << "W; 

prop << " Would you like to save the phase field in matrix form: <I=Nol2=Yes>" << Matrix-boolean << "Li"; 

indata » velocityflag; 
llcout << " Would you like to Save the velocity information in a file: < I =Nol2=Yes>" << velocityflag << "\ri"; 
prop « "Would you like to save the velocity information in a file: <I=Nol2=Yes>" << velocityflag << "h"; 

indaia » alloys.kdistr; 
Ilcout << "Distribuition Coefficient (k): "<< alloys,kdistr <<"\nu; 
prop << "Distribuition Coefficient (k): "<< alloys.kdistr <<"\nW; 

indata» flayerflag; 
//cout <<"Fint I O  cell layer with a conct equal to the liquidus conct? <I=NolZ=Yes>"<< flayerflagcc "Li"; 
prop «"Fint 10 cell layer with a conct equal to the liquidus conct? < I =Noj2=Yes>"<< flayerflagcc "\nt'; 

if (flayerflag == I ) ( 
indata >> ct-layer 1; 
indata >> ct-layer2; 
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ct-liqele2[i]~][k] = ((Temperature - alloys.Ternp_melt-host)/(alloys.mselc2)); 
ct-Iiqelc2_new[i]lj][k] = ((Temperature - alloys.Temp~melt~host)/(alloys.msele2)); 
ct-liqele l [i]b][k] = ((Temperature - alloys,Temp-melt-host)/(alloys.msele 1)); 
ct-liqelel-new[i]b][k] = ((Temperature - alloys.Temp-melt-host)/(alloys.msele 1));; 

/kt-liqele2_new[i Jljj[k] = ((Temperature - alloys.Temp-melt-host)/(slloys.msele2)); 
) // End if 

)// END FOR 
II Close of INPUT FILE 

indata.close(); 

II lNlTlALlZATlON OF TOTAL TlME VARIABLE 
Totaltirne =O; 
counter =O; 

headerflag = 2; // For the velocity function 

// CALCULATION O F  TlME STEP 
II It is important to note that this initial time step is based on the stability criteria 

time-step= tirne-step-function(delta, alloys); // This calls the tirne step function 
time-step = tirne-step *0.O 1; // The multiplication by 0.00 1 is to assure that is below the 

// stability criteria. After it reaches 113 of the size of the 
II control volume it will change to a larger time step. 

tecplotflag = I ; 
timeflag = 0; 

// Sets the TECHPLOT Flag to 1 
// Sets the timeflag to O; 

) Il END IF of Input phase when Recover boolean is NOT equril to R 

do( 

// CALL OF THE PHASE EVOLUTION FUNCTlON 
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// Oct: 12th 19981 included into the phase evolution a check such that time step* velocity is not greoter than 
// than delta for that cell. 
// If 1 do this 1 am thinking that the sphere might not grow evenly. 

phase-evolution(max-ij,maxk, gzone,gzone-new,cuwaturearray, gavg, velocity, Totaltime, 
time-step, tecplotflag, counter, delta, fileint, index, Boundary-boolean, 
ct-liqele I new,  ct-liqele 1, ci-liqele2-new, ctJqele2, alloys, Temperature); 

// CALCULATION OF CURVATURE 

curvature-function(gzone-new, gavg, curvaturearray,index, max-ij, max-k, points, delta, radius,alloys, Boundary-boolean, 
cwvaturearray-old); 

// CALCULATION OF CONCENTRATION 

Conceniration-function(max-ij, max-k, time-step, delta, gzone-new, gzone, alloys, Temperature, index, 
ct-liqete l-new, ct-liqele 1, ct_liqele2_new, ct-liqele2,Boundary-bookan); 

// CALCULATION OF VELOCITY 

velocity-function( alloys, max-ij, max-k, Temperature, curvaturearray, velocity, ct-liqelel, ct-liqele2, velocityflag, counter, headerflag, 
gzone); 

II CALLS FOR THE SAVE FUNCTION TO SAVE ALL THE VALUES 

for(i=O; i <= max-ij; i+t) 
for(j=O; j <= max ij; j+ +) 

for(k = 0; k <= max-k; k++) { 
filesave-function( counter, i, j, k, max-ij, max-k, gzone, gzone-new, curvaturearray, 

gavg, velocity, Totaltime, time-step, tecplotflag, alloys, 
ct-liqele l ,ct-liqele 1-new, ctJiqele2, ct_liqele2_new, Temperature, 
points, delta,LiqphaseBoolean, Tempboolean, noise-boolean, 
Boundary-boolean, Matrix-holean, fileint, radius, curvaturearray-old, 
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coiinter = counter + l ;  
Totaltirne ='i'otaltime -t- time-step; II lncrement of Total Timc 
Temperature =Temperature -(float) 0.0; 11 New temperature value 
tecplottlag =1; 

headerflag = I ; 

II RECALCULATION OF TIME STEP; 
// For the first 113 of the C.V. it will use a small tirne step once it has 
Il reached this level it will start growing with a larger time step. 

if((gzonenew[(max-ij- 1 )/î)[(max-_ij- l)/2](max-k-40) != O.O)&&(timeflag == 0)) { 
tirne-step = time-step* 1; l/ Here we deciede to which level we wish 
timeflag = I ; 11 to increase the time step. 

) II End if 

11 CALL OF SHIFT DOWN FUNCTION 

Shifi-down-fùnction(gzone, gzone-new,ct-Iiqele 1-new, ct-.liqele I ,ct-liqele2_new, 
ct-liqele2,counter, max-ij, max-k); 

Il NOISE FUNCTlON CALL 
//This func!ion is only called if the user has specified noise to be introduced into the system 
if(noise-boolean == 1 ){ 

noise-tunction(gmne, maxjj, max-k); II the noise is added ta gzone and not gzone new because 
Il immediately afier the phase evolution is calculated 

)// ENd if of noise fùnction cal1 

) while((gzone[(max-ij- 1)/2)[(max_ij- l)l2][max-k-5]==0)]1(gzone~2)[(max-ij- 1)/2)[(max-k- l)/2]==0))l(gzonc[(maxXij- 1)/2](2][(1nax-k- l)/2]==0));1/ 
End of while loop; 

II So that the last file is tecplot compatible we set the tecplot flag = I  ; 
tecplotflag = 1 ; 
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for(i=O; j <= max-ij; j++) 

for(k = O; k <= max-k; k++) ( 
filesave-fûnction( counter, i, j, k, niax-ij, max-k, gzone, gzone-new, curvaturearray, gavg, velocity, Totaltime, timestep, 

tecplotflag, alloys, 
ct-liqele 1, ct-liqele 1-new, ct-liqele2, ct-liqele2_ncw, Temperature, 
points, delta, LiqphaseBoolean, Tempboolean, noise-boolean, 
Boundary-boolean, Matrix-boolean, fileint, radius, curvatureamy-old, 

velocity flag); 

tecplotflag =O; 
) 11 End of For 

if(Matrix-boolean == 2)( 
Matrix-savefunction( counter, i, j, k, max-ij, max-k, gmne, gzone-new, curvaturearray, gavg, velocity, Total-time, tirne-step, 

tecplotflag, alloys, 
ct-liqele 1, c'liqele 1-new, c'liqele2, ct-liqele2_new, Temperature); 

) Il End if of matrix boolean 

return O; 

) // END OF MAIN 

void velocity-function(alloy alloys, int max-ij,int max-k, float const Temperature, 
double curvahirearray[MAX-SIZE][MAX-SIZE][MAX-SIZE], 
double velocity[MAX~SIZE)[MAXSIZE)[MAX~SIZE], 
double ct-liqelel [MAX-SIZE][MAX-SIZE][MAXXSIZE], 
double ct_liqele2[MAX-SlZE][MAXXSIZE][MAXXS12E], 

int velocityflag, int counter, in( headerflag, 
double gzone[MAX-SIZEJ[MAX-SIZE][MAX-SlZEJ){ 

// This fûnction calculates the velocity at every ceil that is located at the phase boundary 
// The velocity if the phase field = I .O or O is zero. 
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vel << "Siipercooling_E2"; 
vcl.width(20); 
vel << "Curvat,AE-lncl"; 
vel.width(20); 
vel<< "T.M Host"; 
vel.width(20); 
vel<< "Temperaturc"; 
vel.width(20); 
vel<< "Thermal-Superc"; 
vel. w idt h(20); 
vel<< "VELOCITY "; 

vel<< "hW; 
headerflag = 1; 11 This is done so it only prints in the file once. 

)// End if of Header Flag 

)II End if Velocity Flag = 2 

for(i=O; i+max-ij; itt) 
for(j=O; j<=max-ij; j ++) 

for(k=û; k<=max-k; kt+){ 
velocity[i]ü][k] =(float) alloys.kinetic~coe~cient*(alloys.Temp melt-host 

+ct-liqelel [i][j][k]*alloys.mlelel II  reioved the division by 100 because it is al1 in %wt 
+ct-liqele2[i)fi][k]*alloys.mlele2 11 same here l O0 
-curvûturearray[i)~k] - Temperature); 
// The curvature array already includes the Gibbs Thomson CoeRcient 

II In order to determine the effects of each supercooling effect in the kinetic equation 
11 For every time step 1 wll be outputing a files with al1 the information of the velocity 
11 equation. The file name is Velocity.txt 

if(ve1wityflag == 2){ 
i f((i == 3 %)&&O== 3 8)) { 
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neighbour-flag = I ; 

1 

II Upper surface; 

if(gzone[i]b ](ku]= 1) { 
neighbour-flag = 1 ; 

1 

II Lower surface; 
if@~~ne[i]lj][kl] = 1 )  ( 

neighbour-flag = 1 ; 
1 

return neighbour-flag; 
) // End o f  Neigbour Function 

void Boundary-Condition(int i, int j, int k, int index[6], int max-ij, int max-k,int Boundary-boolean){ 

// Mirror Boundary Condition 
// This îùnction should reflect the same condition as the one found in Curvature 3 
// July 20 th 1998 

// Definition o f  Pcriodical Bounday Conditions 
if(8oundq-boolean == 1 ){ 





Phase Evolution - Appendix C 
double cell; 

// Deilnition of Weight Factors 

U l qfloat) 0.05; 
UZ=(float) 0.1 ; 
U3= (float) 0.05; 
U4=(float) 0.1 ; 
US=(float) 0.20; 
UG=(float) 0.1 ; 
U7=(float) 0.05; 
US=(float) O. 1 ; 
U9lfloat) 0.05; 

// Middle Layer 
// Middle Layer 
// Middle Layer 
// Middle Layer 
Il Middle Layer 
II Middle Layer 
// Middle Layer 
Il Middle Layer 
// Middle Layer 

//Upper Layer 
11 Upper Layer 
11 Upper Layer 
11 Upper Layer 
// Upper Layer 
// Upper Layer 
// Upper layer 
Il Upper Layer 
// Upper Layer 

// Lower Layer 
// Lower Layer 
// lower Layer 
II Lower Layer 
// Lower Layer 
// Lower Layer 
// Lower Layer 
// Lower Layer 

for(i=O; i <= max - ij; i t t )  
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gavg[i]lj][k] = ceilA'otal; 
) / /  Enf of For loop 

) // End of function Averagephase 

void curvature_fÙnction (double gzone[MAX-SIZE][MAX-SIZE][MAX-SIZEJ, float gavg[MAX-SIZE][MAX-SIZE][MAX-SlZE], 
double ~~~~~~~~~~~~~~~~SIZE][MAX-SIZE][MAX-SIZE int index[6], int maxij, int max-k, int points, 
float delta, float radius, alloy alloys,int Boundary-boolean, float 

curvaturearray-old[MAX-SIZE][MAX-S1ZE][MAX-SlZE]) 
{ 

11 Definition of Local Variables in the Curvature Function 
int i; 
int j; // Indices 
int k; 
int const min=O; 
int flagtotal; 
int il, iu; 11 il = i -1, j l=  j-1, and k l =  k-l while iu = i+l, ju =j+l and ku= k-1-1 
int jl, ju; 
int kl, ku, passed, failed; il Passed fail represent the number of nodes that have a phase field and 

Il the curvature is between 30% 
int passed50, passed60; 
int space; 
int Totalqoints; 

II ûefinition of Float variables in the Curvaîure Function 

double gx; l / partial derivative of the gzone wrt to x 
double gy; II partial derivative of the gzone wrt to y 
double gz; // partial derivative of the gzone wrt to z 
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out << "11 "; 

out.width(20); 
out << alloys.kdistr; 
out.width(33); 
out << "Distribuition Coeficient" << "\nt'; 

// FROM THlS SECTION WE START PRINTING THE DATA THAT WlLL BE READ BY TECPLOT 
ALL THE INFORMATION PREVIûUS TO THIS WHERE JUST COMMENTS AND MATERIAL PROPERTIES 
11 THAT ARE ONLY READ IF WE ARE RECOVERNG FROM A FAILED OR A STOPPED RUN. 

out << "in; 
out.width(l0); 
out << "j"; 
out.width( 10); 
out C< "kN; 
out.width( 18); 
out << "GZONE"; 
out.width(l8); 
out << "GAVG"; 
out.width(l8); 
out << "NEW GZONE"; 
out.width(l8); 
out << "CURV-GIBB"; // Thus the old phase field remains and it does not evolve 
out.width( 18); 

out << "CURVATURE"; 
out.width( 18); 

out << "VELOCITY"; 
out.width(l8); 
out << "Conct Si"; 
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double gzone~new[MAX~SIZE]~MAX~SIZE][MAX~SIZE]ydoubc C~~V~~~~~~~~~~~MAX-SIZEI[MAX~SIZE][MAX_SIZE]~ 
float gavg[MAX-SIZE][MAX-SlZE][MAX-SIZE]) double velocity[MAX-SIZE](MAX-SIZE][MAX-SIZE], float 

Total-time, 
float tinie-step, int tecptotflag, in1 counter, float delta, int fileint, int index[6], int Boiindaryboolean, 
double ct-liqele 1 -new[MAX-SIZE][M AX-SIZE][MAX-SIZE], double ct-liqele 1 [MAX-SIZE][MAX-SIZE][MAX-SIZE], 
double ct-liqele2-new[MAX-SIZE][MAX-SIZE][MAX_SIZE], double ct-liqele2(MAX-SIZE][MAXXSIZE][MAX-SE, 
alloy alloys, float Temperature)( 

II  lntialization of variables 

int i, j, k; 
int crystallize_flag; 
float time; 
double ct-liqelelmgap, ct-liqele2_mgap, ct-solele 1, Miscibility_gap, phi, nd-slope, nd-conct-1, ndconct-2; 
double nd-k, ct-solele2, max-diff_gzoncnum, max-di ff-gzone-dinom, max-di ff~mne; 

iqfileint == O){ 
cin >> fileint; 

1 

Il Evolution of the phase field 
for(i=O; i<=max-ij; i++) 

for(j4; j<=max-ij; jtt-) 
for(k=O; k<=maxk; k++) { 

/* "Crystallization can take place in cells with O< gzone 4 or in cells with gzone = O 
having at least one cornpletely crystallized neighbour cell. " From Prof. A. Artemev article.*/ 

crystallize-flag = neigbour-function(gzone, i, j, k, index, max-ij, max-k, B~undary~boolean); 

t h e  = tirne-step; Il Here we assign a local variable the time step calculated by the stability 
Il criteria. 
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II Calculation of the solid concentration of element 2 based on the lincar 
II system of the phase diagram 

ct-sotele2 = ((Temperature - alloys.Temp~mel~iost)/(alloys.msele2)); 
Il Calculation of Maximum Change in phase field allowed 

max-diff~zonenum = (phi - ndconct-l - nd-slope'nd-conct-2 - nd-k)*(0.5); 

max-diffgmne-dinom = (phi - nd-conct-l - nd-slope'nd-conct-î - nd-k) + 
(ndconct 1 '(1 -(ct-solele IIctJiqele 1-mgap))) + 
(nd-slope*nd-conct-2*(l -(ct-solele2/ct-liqele2-mgap))); 

// Calculation of the change in phase field 

gzone-new [ij(j][k] = gzone[i]U][k] + (t ime*velocity(i]lj][k]ldelta); 

// Checking that the change in phase field is not greater than the thermodynarnically 
Il allowed. 

gzone-new [i Ju][k] = gzone[i]U][k] + max-diff~zonq 

)II End if of Change in phase field king greater than max-diffpne 

II Here we need to check that we have not gone over the aceptable phase field value 

ir(gmne-new(i]b](k] >= 1 .O){ Il Then the new value of phase field for that cell has become to great 
gmne-new[i]u][k] = 1 .O; 

)II end if 
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II Excess solute redistribution of Element t (Silicon); 

// Middle Neighbours Elelement I 

ct-liqele i-new[i]Uu][k] = ct-liqele inew[i]Uu][k] +( 1 -pne[i]~u][k])*Excess_ele I/(liqprct); 
ct-Iiqele I-new[il]u][k] = ct-liqele l -new[il]~][k] +(l -gzone[il]U][k])+Excess-ele 1 /(liqgerct); 
c'liqelelpew[i]u][k] =ctJiqeleIpew[i]u][k] +(1-gzone[i]lj)[k])*Excess-elell(li~_perct); 
ct-liqelel-new[iuJlj J[k] = ct-liqelel-new[iu]u]Ck) +( 1 -gzone[iu]lj][k])*Excess-ele l/(liqgerct); 
ct-liqelel-new[i]fii][k] = ct-liqelel-new[i]fil][k] +(l-gzone[i]~l][k])*Excess_eleII(liqgerct); 

// Upper Neighbours Element 1 
c'liqele I new[i]U][ku] = ci-liqele 1 -new[i]u](ku) +( t -gzone[i)~)[ku])*Excessele II(1iqprct); 

II h w e r  Neighbours Elcment 1 
ct-iiqele 1-new(i]lj][kl] =ct-liqele 1 -new[i]~][kl) +( 1 -gzonc[i]~][kt])*Excess-ele l/(liqgerci); 

11 Excess solute redistribution of Element 2 (Copper); 

// Middle Neighbours Elelement 2 
ct-liqele2_new[i]Cju][k] = ct- liqele2pew[i JCju][k] +( 1 -gzone[i]lju J[k])*Excess-ele2/(lieperct); 
ct-liqele2-new[il]ljI[k] = ct-liqele2-new[il]lj][k] +( 1 -gzone(il)lj][k])* Exces~-ele2/(li~perct); 
ct_liqele2_new[i)h)[k] = ct_Iiqele2_new[i]~][k] +(1 -gzone[i]lj][k])*Excessele21(lieperct); 
ct-liqele2pew[iu]~][k] = ct-liqele2pew[iu]U][k] +( 1 -gzone[iu]~][k])*Excess-ele2/(liqgerct); 
ct-liqele2_new[i)ljl][k] = ct-liqeIe2_new[i]ljl)[k] +( 1 -gzone[i]lj l][k])+Excess-eleS/(lieperct); 

Il Upper Neighbours Element I 
ct-liqele2-new[i]U)[ku] = ct-liqele2_new[i]U][ku] +(l-gzone[i]lj][ku])*Excess-eIe2/(liqgerct); 
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if ( TempD-liq < ,1)( 
cout << " 'The temp. Diff calc (K) of the aHowed liquidus tcmp: " TempD-liq << "W; 
cout CC " Liquidus Temperature calculated: " << Temp-allowed-liquid << "in"; 
cout << " Temperature provided by you: " << Temperature << "\nu; 
cout << " You will be required to input a lower temperature value"<< "in"; 
TempD-liq = 0; 
cout << " Press any number to continue: " << "h"; 
cin >> stop; 

)Il End if 

if (TempD-sol< 0.l){ 
cout << " The temp. Diff (K) of the allowed solid temp: " << TempD-sol<< "ho; 
cout << " Solidus Temperature calculated: " << Temp-allowed-solid << "in"; 
cout << " Liquidus Temperature calculated: " << Tempallowcd-liquid << "\nu; 
cout CC " Temperature provided by you: " << Temperature << "in"; 
cout << " You will be required io input a lowe temperature value"; 
TempD-sol = 0; 
tout << " Press any number to continue: " << "\n"; 
cin >> stop; 

]// End if 

Temp = 1; 

) // End if 
else{ 

Temp = O; 
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) Il End of else 

retum Temp; 

) // End of Temperature range function 

void Matrix-savehnction(inl countet, int i, int j, int k, int max-ij, int maxk, double gzone[MAX-SIZE][MAX-SIZE][MAX-SIZE], 
double gzone-new [M AX-SIZE][M AX-SIZE][M AX-SIZE], double curvaturearray [M AX-SIZE][MAX-SIZE][M AX-SIZE], 
float gavg[MAX-SIZE][MAX-SIZE][MAX-SIZE], double velocity[MAX-SIZE][MAX-SIZE][MAX-SfZE], 
float Totaltirne, float time-step, int tecplotflag, alloy alloys, 
double ct-liqelel [MAX-SIZE][MAX-SIZE][MAX-SIZE], 
double ct-liqele 1-new[MAX-SIZE][MAX-SIZE][MAX-SIZE), 
double ct-liqele2[MAX-SIZE][MAXXSIZE][MAX-SIE], 
double ct-liqele2-new[MAX-SIZE][MAX-SIZE][MAX-SIZE],float Temperature) ( 

// Variable 1)eclaration for Filesave-function 
char fileName[40]; 
char *t~aseFileName="Martix"; Il Base File Name 
char stop; 
int n; Il Counter 

Il Editing of file name comrnand. 

sprintf (fileName, "%so/od.txt", baseFileName, counter); 

// Opening of file name 
ofstream out; 
out.open(fileName, ios::app); 
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for(i=O; i<=niax-ij; i++) 
for(j=O; j<=max-ij; j++) 

for(k= 1 ; k<=max_k; k + t )  { 
totalmassl = totalmassl + gzon~new[i]~][k]*aIloys.kdistr*ct-liqc I -new[i)u][k] t 

(1 -gzone-new[i]b][k])*ct-liqele 1-new[i)U)[k]; 

)II End for 

II OPENiNG FOR OUTPUT OF PROPEUTY FILES 
Il Opening of file name 
ofstream mas; 
mass.open("mass.txtl', ios::app); 

if(!"mass.txt"){ 
tout<< "Cm not open file \nW; 
II Handle error 
cin » stop; 
exit (O); 

1 

mass << "Phase Evolution Conservation of Mass test lteration No. "<< counter << "b"; 
mas << " Total mass of element I (Silicon): " << totalmassl "\n"; 
mass << " Total mass of element 2 (Copper) : " << totalmass2 "hW; 
mas << "\n"; 

)Il End of conservation of mass function 




