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Abstract

Form casting, precision casting, soldering, welding are all manufacturing processes
that involve solidification. In casting, solid nuclei appear in the liquid, leading to the
formation of columnar or dendritic (tree-like structures) crystal structures. The type of
microstructures that forms, whether dendritic or columnar, will influence such
important material properties as strength and toughness. In this paper a computer
simulation of a dendrite in three dimensions (3-D) based on the cellular model is
described. Our model assumes constant temperature and the dendrite develops due to
concentration gradients. The simulation is carried out for Al-Si-Cu alloys.
Concentration profiles in three dimensions are obtained from the transport equation of
solute diffusion and changes in concentration due to phase field changes.
Concentration at each cell with a liquid fraction is calculated for every time step. The
interface velocity is calculated from the curvature at the interface, concentrations of
each alloying component, undercooling and a kinetic coefficient constant. The time
step and the velocity provide a new position of the solid-liquid interface for each
iteration. In this model, curvature at each cell is calculated using an averaged phase
field. The average phase field in 3-D is obtained by multiplying the solid fraction of
each cell and its neighbors by weight factors. This model takes anisotropy effects

into account in order to avoid splitting of the dendrite tips. The data obtained from the
model allow us to analyze the dendrite morphology and parameters such as tip radius,

spacing between secondary arms, growth velocity and their dependence on



undercooling. It is expected that the dendrite tip will grow with a stable parabola-like
shape while the growth at the sides of the dendrite will be unstable. This instability at
the solid liquid interface can result in the growth of secondary arms. The results are

compared with analytical model data.
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pter 1: Introduction

1. Objective of the Thesis

The processing and manufacturing of most metal components are affected by
solidification. During the initial stages of manufacturing of any metallic product, most
metals are transformed from a liquid to a solid phase. The transformation of metal from
liquid to solid phase is known as solidification. Solidification influences such processes
as casting, welding, soldering, rapid solidification processing and directional
solidification; thus solidification influences directly or indirectly every metallic product
today. Solidification defects tend to remain during subsequent processes; therefore good
control and understanding of the formation of the solid phase is of great importance.
How the liquid metal is solidified determines the microstructure of the material and as a
result the properties of the material. The property of any metal is dependent on
parameters such as, for example, grain size, grain shape and solute composition. During
solidification the solid phase forms complex patterns that determine the morphology of

the grain. One of these complex patterns is a tree-like structure known as a dendrite.

The dendrite morphology develops as a tree-like structure with a primary trunk and
secondary and tertiary branches. The external environment surrounding the dendrite, such
as, for example, the temperature and concentration gradients around the dendrite
influences this tree-like structure [1]. The dendrite morphology is also influenced by

internal parameters such solid-liquid interface curvature, dendrite tip radius, and
16



secondary inter-dendritic arm spacing. It is the objective of this thesis to explain in detail
a computer model that simulates the dendrite morphology, from which it was possible to
obtain approximations on dendritic parameters such as dendrite tip radius and secondary

inter-dendritic arm spacing.

In the next section, we present the layout of this thesis.

1.1. The Layout of The Thesis

This thesis is composed of the following chapters:
. Chapter 1, Introduction

Chapter 1 outlines the importance of dendrite morphology and the objective and

layout of the thesis.
. Chapter 2, Literature review

Chapter 2 outlines the theory behind the solidification phenomenon. It discusses
the parameters that affect the solidification process and analyses the importance
of the process in manufacturing of materials.

The literature review presented in this chapter is based on publications of the past
10 years (1989-1999). The first sections of this chapter are a summary of the
process that affects dendrite growth and morphology. This chapter also presents

the mathematics that describes dendrite growth.

17



Chapter 3, Cellular model of dendrite growth

Chapter 3 describes the cellular model and how it was used to simulate the growth
of a dendrite in three dimension (3-D) for a tertiary alloy. This chapter presents all
the parameters that are taken into account by the model and how the mathematical
equations used by our model are numerically approximated using a finite

difference scheme.
Chapter 4, Results

Chapter 4 discusses the results obtained from our model such as dendrite tip
radius and growth velocity. Results on tests that validate the model such as the
conservation of mass test are also presented in this chapter. The results of the
model are then compared to the results presented by a parabolic approximation of

the dendrite tip presented by Fisher and Kurz’s model [1]
Chapter 5, Conclusion and future work

Chapter 5 provides conclusions on our model and discusses possible changes to

the model that could improve its accuracy and performance.

18
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Chapter 2: Literature Review

2.0 Introduction

This chapter outlines the theory of solidification phenomenon and dendrite growth. It
discusses the parameters that affect the solidification process and analyses the importance
of the process in manufacturing of materials. Later sections of this chapter present the
mathematics that describes dendrite growth. The literature review presented in this

chapter is based on publications of the past ten years (1989-1999).

2.1 Importance of solidification and dendrites

Due to the advances in computer technology, engineers and scientists in the field of
computational metallurgy are now able to simulate dendrite growth in industrial alloys.
This simulation allows us to approximate processes that occur in metals, e.g., the metals
used in the aerospace and automotive industry. Solidification occurs in natural processes
such as the freezing of lakes during the wintertime in some countries. Solidification is
encountered in material processing as, for example, casting and directional solidification.
When a liquid metal solidifies, it often forms a complex pattern of branch structures,
similar to trees. Such tree-like structures are called dendrite [1]. The understanding of

the dendrite morphology provides us with an insight into such parameters as tip radius,
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distance between secondary arms and concentration distribution of solute. These
parameters affect such important material properties as material strength and toughness.
The knowledge of the dendrite morphology and its effects on material properties will
allow material manufacturers to produce higher quality material products. The purpose
of this thesis is to simulate the morphology of a dendrite in three dimensions (3-D), for

three component alloys at constant temperature.

When a metal is solidified several processes occurs simultaneously. These processes are:

e Nuclei formation,

e Crystal growth,

e Heat transfer by heat diffusion, by convection,

e Mass transfer.
All these processes occur at the same time and interact making the analysis of the
solidification phenomenon complicated. The first requirement for the formation of a
crystal during solidification is the formation of a nuclei. The nuclei can then grow to form
a crystal or it can re-melt and disappear depending on the nucleus radius. The formation
of the crystal then leads to the formation of the grain in the metal, thus the importance in

understanding crystal growth. An example of a dendrite is shown in figure 2-0.

Figure 2-0: Dendrite Structure
20



Dendrite morphology determines the final microstructure of the material and thus it
effects such material properties as Ultimate Tensile Strength (oyTs), ductility and crack
resistance among others. These properties are critical and determine the usability that a
material is given in industrial applications, if the material is too weak or toughness is too
low then it is probable that the material will have very little if any use in real life
applications.

In our model, mass transfer due to diffusion is the main driving force for the formation
and growth of a dendrite. In the following chapters, it will become obvious that the
computer time required to solve a three-dimensional model based on concentration
gradients for a tertiary system is computationally intensive. In order to avoid the
simulation of the heat transfer process our model assumes constant temperature.
Analyzing a dendrite morphology based on heat diffusion would require a time step that
is approximately one thousand times smaller than that for an analysis based on mass
transport, for the same grid size. This would mean that a computer would require doing
one thousand iteration in the mass transport domain for each iteration in the heat transfer
domain. A smaller time step would require approximately 31 more cells in each
coordinate direction (x, y and z) in order to solve the same problem, which would require
more computing time.

For a dendrite to grow it is essential for a nucleus to exist in the liquid metal. Our
simulation begins once the nucleus is developed. In the following pages, we will discuss
very briefly the processes that take place for the formation of nuclei and the mathematics

that describes these processes.
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2.2  Nucleation Theory

Nucleation is the first stage of solidification. Nucleation is the formation of minute
crystalline regions within the liquid metal. These minute crystalline regions are called
nuclei, embryos or clusters. They are formed due to random fluctuations of patterns of
atoms within the liquid metal. Atoms from the liquid metal can attach to these crystalline
regions. Small crystalline particles can be formed even above the melting temperature of
the liquid metal, although they are unstable. Thus, for the formation of a stable nucleus it
is required that the temperature of the liquid metal is below its melting temperature [1].
The difference between the actual temperature of the metal and the equilibrium melting
temperature of the system is known as supercooling or undercooling. Undercooling can

be related to the driving force of transformation, Ag:

AT-Ah
Ag= T

L4

2-1)

where
® Tn is the melting temperature of the host component,
» Ag is the difference in Gibbs energy per unit volume between the solid and
liquid phase
s AT is the undercooling and

=  Ah is the difference in specific enthalpy of the solid and liquid (2].



The formation of a solid nuclei in the liquid phase leads to the variation of the Gibbs
energy (AG). This variation of the Gibbs energy is described by equation 2-2 (assuming a

spherical nucleus):

Ag-4-7-r

AG=0c-4-7-r*+ 2-2)

where
® Agis the difference in the Gibbs energy per unit volume between the solid and
liquid phase
® o is the surface energy per unit area

=  “r”is the radii of the nuclei [1].

The first term of equation 2-2 represents the contribution of the surface energy while the
second term represents the volume contribution of the Gibbs energy per unit volume
between the solid and liquid phase. The second term of equation 2-2 is negative if the
temperature of the system is below the melting temperature of the alloy and positive if
vice versa. From equation 2-2, it can be observed that for a small nucleus the
contribution of surface energy is greater than the volume contribution. If the temperature
of the system is below the melting temperature, then the volume contribution to the Gibbs

energy is negative. From this we can conclude that equation 2-2 will have a maximum

Gibbs energy (AG) at a specific critical radius (r;).



Surface Free
Energy Term
Embryos Nuclei

Volume Free
Energy Term

Figure 2-1: Gibbs Energy vs. Nuclei radii. [3]

From Figure 2-1 we can conclude that a nucleus with a radius greater than r, will grow.
If the radius of the nucleus is below that critical radius then the nucleus will re-melt and
disappear.

It is important to note that there are two types of nucleation:

= Homogeneous and

= Heterogeneous.
These two types of nucleation describe the presence or lack of an existent interface at the
nucleation site. For example, if the nucleus initiates completely surrounded by the liquid
phase, the formation of the nucleus is called homogeneous nucleation. If the nucleus
forms on one of the walls of the cast, the formation of the nucleus is known as
heterogeneous nucleation. In our model, the growth of the dendrite starts once the

nucleus is greater than the critical nucleus. In the next section of this chapter, we will

24



describe the effects and processes that influence and contribute to the growth of a nucleus

to a dendrite.

2.3 Crystal Growth

The second part of the process of the dendrite development and, eventually, the formation
of the grain, is growth. The following effects and processes influence the growth of a

dendrite:

e Kinetics of the interface (atom rearrangement)
e  Heat and mass diffusion

e  Capillarity effects.

In the following sub-sections, we will describe each of these processes and effects in

more detail.

2.3.1 The kinetics of atom attachment at the solid-liquid Interface

The kinetic of the growth of the solid-liquid interface depends on the probability of the
atoms being attached to the interface and the probability of those atoms remaining fixed
on the interface. One way to describe the growth of the solid-liquid interface is to assume
that atoms have a cubic structure. Any atom would have six different possible
orientations (faces) for it to attach to the solid-liquid interface.



Figure 2-2: Atomic Rearrangement [1]

From figure 2-2, it is possible to see that an atom that is surrounded by liquid has zero
atoms in solid phase as neighbors, while an atom that is completely immersed in the
crystal has six atoms in solid phase as neighbors. The growth of the solid-liquid interface
is determined by the probability of atoms being attached to the interface and the
probability of atoms being fully immersed in the crystal, such as the case of atom no. 6
shown in figure 2-2. In the case of a faceted interface, an atom with two neighbors is
more prominent to form new rows of atoms. These new rows would grow by addition of
atoms of type 3. Once the complete layer is filled, a very high supercooling would be
required for the addition of an atom of type 1. Type 1 atoms would constitute a new
nucleation site for the formation of another layer. This formation of new layer of atoms
constitutes the propagation of the interface. This growth can lead to the formation of two
types of interface morphologies. These are:

. Faceted and



s Non Faceted

Figure 2-3: Faceted vs. Non Faceted morphology. [1]

A faceted interface can appear jagged at the microscopic level but is usually very smooth
and flat at the atomic scale. This type of interface tends to maximize the atomic bonding
between the crystal and the atoms on the interface, thus, leaving few sites where atoms
arriving at the interface by diffusion from the liquid can attach themselves. The interface
morphology is dependent on the growth process since substances that allow a non-faceted
interface growth from a melt, also allow a faceted interface growth from a solution or
vapor [1].

A non-faceted interface usually has many sites where atoms arriving from the liquid
metal can attach. Non-faceted interfaces are most common in metals. This type of

interface tends to be rough at the atomic scale.

The velocity at which the interface propagates is dependent on the following parameters:

=  Kinetic coefficient,



®  Curvature,
=  Surface energy of the interface and

=  Undercooling.

All these parameters can be calculated. The kinetic coefficient of most alloys is not
known and thus it is usually approximated. This approximation is sufficient when the
growth takes place at low supercooling, since the effects of curvature tend to have a

greater influence on the growth under this condition [4].

The velocity of the solid-liquid interface can be mathematically expressed as:

V=u, - (AT +C,, ,-m, , +C,, ,'m, , -I-k) (2-3)

where

. V is the velocity at the interface (m/sec)

. M is the kinetic coefficient of the alloy (m/sK )

- AT is the difference between the melting temperature of the pure host
component and the actual temperature of the system (K)

- Ciiq_1 is the liquid concentration of the first alloying element (%wt)

- m, ; is the liquidus slope on the phase diagram of the first alloying
element (K/%wt)

- Ciig_2 is the liquid concentration of the second alloying element (%owt)



® m; > is the liquidus slope on the phase diagram of the second alloying
element (K/%wt)
® I' is the Gibbs Thomson coefficient (Km)

® k is the curvature of the solid-liquid interface (m™) [5]

The sum of all parameters inside the brackets in equation 2-3 represents the kinetic
undercooling of the solid-liquid interface. From equation 2-3 it can be observed that the
velocity at which the interface moves in space increases as the kinetic undercooling
increases. The liquidus slopes of both alloying components are calculated from the phase
diagram. The slopes are approximated as straight lines. This approximation is used to
simplify equation 2-3 because higher order degree polynomials would not contribute
significantly to the accuracy of the model. The liquidus slopes of both alloying
components are negative while the concentrations of the alloying components are always
positive. Thus, the multiplication of the concentration and the liquidus slope produces a
negative term in degree Kelvin. The curvature term of equation 2-3 is calculated at every
point of the interface. Curvature is taken to be positive for a convex solid-liquid interface.
The value of curvature multiplied by the Gibbs Thomson Coefficient is known as
capillarity undercooling. Thus, the total kinetic undercooling is the addition of the
capillarity, composition and thermal undercooling. The total kinetic undercooling when
multiplied by the kinetic coefficient determines the velocity of the interface. The velocity
at every point of the interface when multiplied by the time step determines the new
position of the interface. Every point at the interface may have different values of
concentration, curvature, undercooling and, therefore, may have different velocities.

Therefore, by multiplying the velocities at each point of the interface by the same time
29



step per iteration, we obtain different positions of the solid-liquid interface at each point.
In time, the position of each point on the interface leads to the development of an
interface with a complex morphology. This leads to the formation of a dendritic

structure [5].

The different values of concentration at every point of the interface are due to the
movement of atoms within the solid-liquid interface, within the solidified region and
within the liquid region. The movement of atoms is known as mass transport. The next

section will describe in more detail how the mass transport occurs and the mathematics

that describes this process.

2.3.2 Mass Transport

Diffusion is the movement of atoms in a solid, liquid or gaseous environment from areas
of high concentration to areas of low concentration. Mathematically diffusion is
described by Fick’s First Law of Diffusion, which states that the movement of atoms
from one point to another in space is proportional to the concentration difference between
these points. Fick’s First Law is a steady state equation and, therefore, it is time
independent. The mass transport that occurs during solidification is strongly dependent
on time. Thus, Fick’s Second Law of diffusion describes this type of transport [4].

Mathematically Fick’s Second law of diffusion in one dimension (1-D) is expressed as:

dC. d dC
r=—(D-Z=5) (24
— dx( ~5) @49




where
u D is the diffusivity constant
. dCx/dx is the concentration gradient in the x direction

. dCx/dt is the rate of change of the concentration in time.

Equation 2-4 is not complete because it does not take into account the movement of the
solid-liquid interface. During the solidification of alloys solute is rejected from the solid
region into the liquid region, thus creating a region of excess solute also known as the
diffusion boundary layer. This layer is created during a transient period. The solute is
rejected because the solid-liquid interface moves in space. During this transient period,
the solute can be rejected if the solubility of the solid in the liquid is greater than that in
the solid. In other words this rejection occurs if the distribution coefficient
(k=Cs0i1a/Ciiquid) is less than one. The solute rejected is then diffused through out the rest
of the system, following the concentration gradients. In most cases, the rate of rejection
of solute from the solid region and the growth rate of the solid-liquid interface are

proportional to each other [1].

When the solid-liquid interface moves it produces a concentration change that

mathematically can be expressed by equation 2-5:

N=4f; (C, u —Ci u)-Ax-Ay-Az  (2-5)
where
° N is the excess solute due to the solid-liquid interface movement

L Af' is the change in the phase field.
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o C'iiq_ijk is the liquid concentration in cell i,j,k at the current time step
o C' sol_ijk is the solid concentration in cell i,j,k at the current time step

. Ax, Ay, Az are the grid size in x, y and z coordinate direction [5].

The excess solute that is rejected is redistributed through out the liquid phase of the
neighboring cells when the liquid fraction in that cell is less than 50% of the cell volume.
When the liquid fraction in a cell is greater than 50% of the cell volume the excess solute
is redistributed through out the cell. This will be explained in more detail in Chapter 3,

since this is a principle part of the concentration redistribution function.

In the same way that solute is transferred from areas of high concentration to areas of low
concentration, heat moves from hot to cold areas within space. Heat diffusion is not taken
into account by our model since our model assumes isothermal conditions. Dendrite
simulations are usually modeled either taking into account solute redistribution (mass
transfer) or heat redistribution (heat transfer). To take both mass transfer and heat transfer
into account is very computationally intensive.

Another effect that influences the growth of a dendrite is the capillarity effects, this effect

is explained in more detail in the next section.

2.3.3 Capillary effects

Curvature at a point on the solid-liquid interface can be defined as the amount of degrees
of bending or a tendency of that point to depart from a tangent drawn to the solid-liquid
interface at that point [6]. The curvature of the interface multiplied by the Gibbs-

Thomson coefficient is known as capillarity undercooling as shown in equation 2-6.
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AT =k-T (2-6)
where
° k is the curvature of the solid-liquid interface
° I" is the Gibbs-Thomson coefficient

Capillary effects are only important in those interfaces which size is approximately less
than 10 micrometers. The free enthalpy of a small particle in a liquid melt increases as
the size of the particle decreases, while the free enthalpy of the liquid surrounding the
particle remains constant. The free enthalpy of the liquid remains constant because the
liquid metal surrounding the particle is greater than the size of the particle. The free
enthalpy of a small curved particle can be defined as the muitiplication of its internal
pressure by its molar volume. This internal pressure can be mathematically expressed as
the multiplication of the curvature of the interface and the interface energy. The interface
energy is defined as: “the reversible work required for the creation of a new surface area.
In the case of a solid-liquid interface, the specific interface energy can be set equal to the
interfacial tension.”[1, page 204]. In summary, as the curvature increases the internal
pressure increases and thus the free enthalpy of the particle increases. Capillarity effect
then plays an important role on nuclei formation, growth, dendritic and eutectic

morphologies.

Mathematically curvature of an interface is calculated by equation 2-7:



where
e g is the averaged phase field of the solid-liquid interface
e V. (including the dot) is the divergence of a vector

e Vg is the gradient of the average phase field
e Vg/|Vg]| is the unit vector of the average phase field.[1]

Curvature multiplied by Gibbs-Thomson coefficient is known as capillary undercooling.
Gibbs-Thomson coefficient is the ratio of the interface energy and the solidification

entropy {5].

Chapter 3, presents in more detail how the curvature of the solid-liquid interface is
calculated. In this chapter we just wanted to present the overall theory and concept of
curvature and how this one affects the growth of the solid-liquid interface. In the next
section, we briefly present the different numerical methods used to describe the formation

and growth of a dendritic structure.

2.4 Dendrite formation and growth

Several models have been developed to describe crystal growth. Some of these are:
e Tracer point model,
e Phase field model and

e Cellular model.

The first two models will be briefly described in the next sections. The cellular model

will be described in depth in Chapter 3.



2.4.1 Tracer points

The tracer point model consists in representing the solid-liquid interface as a set of points

in space as shown in figure 2-4.

IR

19 18 o

Figure 2-4: Tracer point representation
This method is useful when the shape of the solid-liquid interface is not very complex. As
the dendrite grows the morphology of the solid-liquid interface becomes complex very

fast, due to the formation of secondary and tertiary branches as shown in Figure 2-5.

Figure 2-5: Complex Solid-Liquid Interface using tracer points [7]
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Figure 2-6: Section A-A

Figure 2-6, shows one of the disadvantages of using tracer points when the shape of the
solid-liquid interface becomes complex. The use of tracer points to represent complex
solid-liquid interface becomes very computationally intensive and it becomes very
difficult to keep track of the position of each point with respect to its neighbors in time. A
3-D representation of the solid-liquid interface morphology would be even harder since
the points might find themselves in situations that would allow them to move through the

control volume 360° in all coordinate directions. The implementation of boundary

conditions is not a trivial task.

The use of the tracer point model is feasible when the solid-liquid interface is simple and

two-dimensional. In section 3.2 we briefly describe another method to mathematically

describe crystal growth.



2.4.2 Phase Field model

The last section of this chapter briefly describes another method used to simulate dendrite
structures, cellular structures and processes such as Ostwald ripening among others. The
phase field model provides a simple and elegant method for simulating the physical
phenomenon already mentioned. The phase field model is also computationally simple to

implement in comparison to methods such as the tracer point method.

The phase field model is based on a mathematical equation known as ¢(x,t) which
characterizes the interface at each point in space and time. The phase field model
assumes ¢(x,t) to be a constant. For example if ¢(x,t)= /2 a phase field value greater than
‘2 would denote a solid region while a phase field value less than /2 would represent a
liquid region. This phase field function exists within a fixed region symbolized by Q.
This region has boundary conditions described at 2. Parameters such as temperature
and concentration for the alloying components would be represented by c(x,t), while the

temperature would be represented as T(x,t) [8].

Another important aspect of the phase field model is that it assumes that the Helmholtz
free energy () is also a function of the @(x,t). Thus mathematically Helmholtz free

energy would be described as:

Ip,...) = ‘{[ f(@,-.) +%£2(\7¢)2 +..]-dQ 2-7)
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where,

¢ is the phase field function

e Qs the region containing the phase field function
e dQ is the boundaries of the phase field function.

e ¢ isaconstant

While the free energy density is described as:

f@. D) =W]p(p-Dip-3-AD)-dp 2-8)

where

e W is a constant (Joules/m3)

e [(T)is a monotonic increasing function of temperature
The monotonic increasing function B(T) is a function of temperature such that at Tm (the
freezing temperature) and at |B(T)| less than a half the monotonic increasing function
B(T) is equal to zero.
By graphing the free-energy density function as function of the phase field value we
obtain two minimums in which the phase field may exist in a stable condition. These
minimums occur at a phase field of zero and a phase field value of 1 (completely liquid
or completely solid regions). This would indicate that a change of phase from solid to
liquid or liquid to solid within the region represented by Q incurs an energy penalty. Any
change in the phase field ¢ that departs the phase field vaiue from zero or one would
produce an increase in the total energy of the system. The restriction that |B(T)| less than

one half ensures that these two minimums exist as seen in figure 2-7.
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Figure 2-7: Free-energ? density function [8].

Figure 2-7 also shows that when the system temperature is greater than the melting

temperature of the host component, the global minimum on the free energy density curve

occurs at a phase field value of zero (liquid state). It also shows that when the system

temperature is less than the melting temperature of the host component then the global

minimum of the free energy density curve occurs at a phase field value of one (solid

state).

The phase field model can also be used to model the phase field evolution of a binary
system in an isothermal condition, although the model can be extended to a tertiary and
higher order systems. The free energy density for each component is of the form of
equation 2-8 where the constants that describe this equation are unique to each alloying
component. Assuming the following conditions:
T, <T <T,} then
Lepm<ocpm<t ¢
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where
e Ty is the melting temperature of component A or B
e T is the temperature of the system

e f is a monotonic increasing function of T.

Then the energy density function of a solution assuming it is an ideal solution is

described by equation  2-10:

f(g.c.T)=c- f(pT)+(1-0)], (¢,T)+¥-[cln0+(l —¢)In(1-¢)] (2-10)

where

e Ris the universal gas constant and

® vpis the molar volume (assumed to be constant) [8]
The first two terms of equation 2-10 describes are the contribution of the free energy
density of each component, while the last term of this equation relates to the mixing of

the components in the solution (assuming ideal solution).

In the phase field model the phase field evolution is mathematically described as follows:

op o3
— o L — 2-9
a (WJ @)

where

e L is adifferential operator



e 3 is the Helmholtz free energy as described by equation 2-7 [8]

The last section to be described by the phase field model is the boundary conditions.

These are described by equation 2-10:

PP

% o 2-10)
_d’_ (-

where
e nis the normal to the boundary (6Q2)
e c is the composition of the solution and

e ¢ is the phase field function [8].

Equation 2-10 states that the change in composition of the system due to mass transport

across the boundary is equal to zero.

One of the mayor advantages of the phase field model is that it describes very well the
physical phenomenon that affects dendrite growth. This model has lead the way in
understanding the parameters that affect dendritic morphology. The mayor disadvantage
of this model is that its implementation for a three dimensional model of alloys is too
computationally intensive. A significant improvement in finding a solution to this
problem has been achieved for thermal dendrites. The computational efficiency of the
phase field method has been enhanced with the introduction of the formulation allowing
for the use of a larger boundary thicknesses [9,10]. The most important result of this

improvement is a real possibility to produce a 3-D simulation. However, this opportunity
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is limited to thermal dendrites of pure materials. The cellular model overcomes the
limitations of the phase field model in implementing it for large dendrite simulations
from a computational point of view. The cellular model does not describe with the same
degree of exactness the solid-liquid interface morphology, and certain parameters such as
curvature are estimated. The major advantage of the cellular model is its ease of

implementation for large three-dimensional systems in binary or tertiary alloys.

The resuits that are described in this thesis of dendrite growth for tertiary alloys are the

first to describe realistic dendrite growth in alloys.

In conclusion, the phase field model is one of the computational (mathematical)
techniques used to describe physical phenomenon that occurs in nature such as the
formation and growth of crystals during solidification. In the next chapter the cellular

model, which was used to describe the growth of a dendrite, is explained and described in

detail.
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Chapter 3: Cellular Model of Dendrite
Growth

3.0 Introduction

This chapter describes the cellular model and the ways it was used to simulate the growth
of a dendrite in three dimensions (3-D) for a three component system. The chapter
presents in detail the mathematical equations that describe the phase evolution of the
system. It also contains the mass transport equations and explains how these are
approximated using the finite difference method to obtain the solute concentration
profiles. We then present the ways each cell uses the values of solute concentration,
curvature of the solid-liquid interface and thermal undercooling to determine the interface
velocity at each cell. This chapter also describes the functions that are part of two
computer programs that define our model; these are Phase-maker and Phase-evolution. In

the next pages, we will discuss in detail the following sections of our model:

e  Phase field representation

e  Mass transport equations

e  Curvature analysis

e  Stability criteria and time step

e Interface Velocity



e Phase field evolution
e [sothermal Conditions

e  Anisotropy effects

3.1 Phase field representation

In the cellular model, the control volume is divided into small sections known as cells.
The cells are assigned a phase field value that represents the physical state of the material
in that cell. The phase field value is equal to the volume fraction of the solid phase in the
cell.

The cells are assigned specific lengths in X, y and z direction. In our model, the actual
length of each cell in every direction of the coordinate system is the same. The sum of all
the cell in one direction determines the total length of the control volume in that
direction. Figure 3-0, shows how the control volume is divided into a smaller cells,

forming a numerical mesh.

Figure 3-0: Control Volume
4“



Each cell is assigned an identifier within the control volume that is equal to the cell
number in the X, y, and z coordinate system. As an example, cell 30,20,40 is a cell
located at 30 cells in the x direction, 20 in the y direction and 40 in the z direction. In
order to create the initial phase field, a computer program known as Phase-maker was
developed. Phase-maker is a simple computer program written in C language. The
program is a for-loop that assigns a specified value equal to zero or one to the phase field
array at every cell in the control volume. Phase-maker also assigns the initial
concentration values of the two alloying elements. The third element is obtained from the
fact that in each cell the sum of all elements adds to 100%. Phase-maker also asks the
user for other physical and material parameters that are required by the phase evolution

part of the model. These physical and material parameters are:

) Grid size of each cell (meters),

° Number of cell in the x and y coordinate system (i,j),

. Number of cell in the z coordinate system (k),

o Initial concentration of element 1 (in our study element 1 is Silicon),
] Initial concentration of element 2 (in our study element 2 is Copper),
° Temperature of the system (Kelvins),

o Is noise added or not to the system,

. Kinetic coefficient (m/(sK)),

o Diffusion constant of the liquid host (in our model the host is Aluminum),
) Liquid diffusion constant of Silicon in Aluminum (K/%wt),
° Liquid diffusion constant of Copper in Aluminum (K/%wt),

o Gibbs Thomson Coefficient of the alloy (mK),
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Liquidus slope of Silicon in Aluminum from the phase field diagram
(K/%wt using the negative sign convention),

Liquidus slope of Copper in Aluminum from the phase field diagram
(K/%wt using the negative sign convention),

Solidus slope of the Silicon in Aluminum from the phase field diagram
(K/%wt using the negative sign convention),

Solidus slope of the Copper in Aluminum from the phase field diagram
(K/%wt using the negative sign convention),

Melting Temperature of the host component (K),

Boundary condition (Periodical in i,j but not in k or periodical in i,j, and
k),

Every how often will the code save the information to the hard drive.

All of these parameters and the initial phase field are stored in a text file to be read by the

Phase-Evolution program. The actual code for Phase-maker is found in Appendix "C".

An initial phase field is presented in figures 3-1 and 3-2. The visualization tools is known

as Techplot (Amtec Engineering Inc), and allows us to visualize in three dimensions the

contour plots of the solid-liquid interface.

Figure 3-1: Initial phase field cut in two dimensions (2-D)




Figure 3-2: Initial Phase Field Contour Plot in 3-D

Figure 3-2, represents the initial nucleus that is required for the growth and formation of a
dendrite. It is this initial information of the nuclei that Phase-maker produces as an output
file known as "phasein.txt". The initial nucleus can be either on a flat plate or it can be
perturbations on a sphere. Phase-maker creates this initial sphere by using a random
generator. This random generator generates a random number of points within each cell.
Phase-maker then compares the position of each random point in that cell to a radius that
has been specified by the user. If all points are within the radius then the cell is assigned
a phase field value of one, if the points are all outside the radius then the phase field in
that cell is assigned a value of zero. If the cell has points that fall in and outside the
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radius value it assigns the phase field value of that cell a percentage of the total number
of points that fall within the radius.

Most runs in our analysis are done on the formation of a dendrite from a flat plate as
shown in Figure 3-2. This is because computationally it is less time consuming. The
Phase-evolution program models the evolution of the initial nuclei to the formation of the
dendrite. The phase-evolution code can be found in Appendix “C”. The formation of a
dendrite requires a perturbation, otherwise an initial flat plat would solidify as a flat plate,
while a perfect sphere will solidify as a perfect sphere. In nature, this is not likely to
occur and special processes are required in order to achieve flat plate solidification as for
example the formation of crystal wafers in the semiconductor industry. It is important to
understand that no physical surface is completely flat, while mathematically one may
represent a surface to be completely flat. The presence of the perturbation leads to the
growth of the nucleus and eventualiy the formation of a dendrite. Phase-Evolution is
capable of simulating the growth of the nucleus due to mass transport effects at the solid-
liquid interface. This mass transport leads to a movement of the solid-liquid interface.
This change in the position of the phase field in time can be mathematically expressed as:

Ar-v-S

=S = =m (3-0)
where
° At is the time step
° 1 is the time enumerator
0 1, j, k are the cell numbers along the x, y and coordinate system
° S is the area of the interface boundary in a cell

° fijk is the value of the phase field in cell i,j,k
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° Afii is the change in the phase field value per time step
° Ax, Ay and Az are the grid size of the cell in the x, y and z coordinate

system [5].

From equation 3-0, it is possible to determine the new position of the phase field at every
cell. The factors that affect the change in position of the solid-liquid interface are the
velocity interface at each cell, the time step and that the cell has a fraction solid or one
immediate neighbor that is completely solidified. The velocity of the interface is
influenced by parameters such as, concentration, temperature and curvature of the solid-
liquid interface. The solute transfer drives the growth of the nucleus from areas of higher
concentration of solute to areas of lower concentration of solute. The mass transfer

process is explained in more detail in section 3.2.

3.2 Mass Transport

Mass transport is the process by which mass is moved through the control volume in
accordance to Fick’s laws of diffusion. Concentration is diffused within the control
volume from region of high concentration to regions of low concentration. Every cell is
assigned a concentration value for the liquid and solid phase. In our model, mass transfer
through the solid cells is not taken into account. This approximation is possible because
the rate of diffusion in liquid is approximately one thousand times greater than in solid.
The change in the liquid concentration of a cell for any alloying component can be

derived from expanding Fick’s Second Law of Diffusion in three dimensions (equation 2-
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4). The finite difference approximation for the evolution of concentration in a cell can be

mathematically expressed as (equation 3-2):

yk

Ar

where

ci-c,

Ax! ay* Az?

- D[( ClautClin—2C, )_*_(c:.;«u +C,,s=2-Cy J+(Cvl./.m +Cla=2-Cp J:l

At is the time step

"1" is the time numerator.

Cii'"! is the new concentration in that cell.

Cii' is the concentration in that cell for the previous time step

AXx, Ay, Az are the grid size in each coordinate direction

i,j,k are the coordinate indices of each cell along the x, y and z coordinate
system and

D is the diffusion constant [5].

The finite difference scheme was used since it is computationally easier to implement

than the finite element approximation due to the local character of the evolution

equations for fractions of solid.

Equation 3-0 allows us to calculate the new concentration values for each cell per time

step. It is important to note that equation 3-0 does not include the effects of concentration

build up at the interface due to the solid-liquid interface movement. In order to take into

account the concentration change due to solid-liquid interface movement, it is necessary

to add to the right hand side of equation 3.0 the excess solute released. The excess solute

released due to solid-liquid interface movement is calculated as:



Excess _Solute = Af,, -(C,f,w, -C! (ij ) -2

where
° Af ik is the change in the phase field
. C'uq iik is the liquid concentration of that cell
L Cls(Tijk) is the solidus concentration of that cell at the current system

temperature [5].

This solidus concentration is obtained from the phase diagram at the system temperature.

Equation 3-2 can also be expressed as:

Excess _Solute =Af,, -(C,, , -(1-k))  (3-3)

where

° k is the distribution coefficient [5].

The distribution coefficient is the ratio of the solidus to liquidus concentration lines. This
ratio is approximately 0.13. Equation 3-2 and 3-3 are equivalent to each other. In the
cellular model the equations used to calculate the new concentration values for each cell
is very dependent on the amount of liquid fraction in the cell. Our model assumes that
when the fraction of solid in each cell is small the mass is transferred within the cell. As
the cell is almost completely solidified (more than 50% of the cell) then the model
assumes that the transfer of mass occurs proportionally to the amount of liquid in the

neighboring cells. The neighboring cells are only the immediate neighbors that have at
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least one face in common with the cell under study. In the following sections, we present
how the new concentration values for each cell are calculated and how the diffusion

effects are taken into account.

3.2.1 Mass Transfer in cells with liquid fractions greater than or equal
to %

In a cell that is completely liquid or has a small fraction of solid (a fraction of solid which
is less than 50% of the cell) the concentration evolution of any alloying component is

calculated as follow:

—(C:ld;k -Czjk)a(l _f;iuk) _ (C;k _Cil-uk)' 9(1-_/:;,;)_
Ax? Ax?
C=C" + D, - At . (C,;.u - C,:t) ‘9(1 _j;lpu) _ (C;k - C.:-u)'g(l "f.;l.u) +
R G Y Ay’ v (3-4)
(ijh-l - Clj‘) 6(1 - ./;,ion) _ (C,_,,k '—C:jk-x) : 0(1 - ,,i-l
L Az Az’ i
Aj:jlﬁ ) (Cf:q ik - CJ,ol 1k (Tl;,t ))
a-£)
where
° C"';i is the new concentration value in a cell
° Ciix is the concentration value at the previous time step
° i,j,k indicate the cell number and the location of the cell within the control
volume
3 fijk is the fraction of solid in a cell



o Af'jx is the change in the fraction of solid within the cell (phase field

change).

o Diq is the liquid diffusion constant

o At is the time step

° Ax, Ay, Az is the grid size of the cell in the x, y and z coordinate system
and

. 0 is a step function [5].

Equation 3-4, takes into account the concentration diffusion from all neighboring cell as
well as the effects in the change in position of the solid-liquid interface in that cell. The

(0(1-f')) step function is determined as follow:

8(x)=0 x<0
f(x)=1 x>0

(3-5)

The step function (Equation 3-5) is included in equation 3-4 to prohibit the diffusion of
solute from the liquid phase into the solid phase. This is done to avoid solute diffusion
from the liquid phase into the solid phase. In reality certain cells might receive solute
from the liquid, but the physics behind this transfer is not taken into account in our model
for simplification reason and also because it would not contribute significantly to a
different morphology, due to the slow process of intake of solute by the solid phase.
Equation 3-4 can be used also to simulate the concentration evolution in the solid phase.

The only parameter that would change is the value of the diffusion constant.



The second scenario that is required to be simulated is when the liquid fraction in the cell

is less than 1/2. This scenario is described in section 3.2.2.

3.2.2 Mass Transfer in cells with liquid fractions less than %:

When a cell solidifies the liquid percentage in the cell is reduced and the liquid fraction
approaches zero, under these last stages of a solidification of the cell, the concentration
approaches infinity. It approaches infinity because any concentration assigned to a cell is
redistributed as a percentage of the liquid fraction remaining in that cell, and if this liquid
fraction approaches zero then the concentration assigned to it would approach infinity,

causing large concentration fluctuations.

If the cell suffers a positive change in the phase field then the excess solute is calculated
based on equation 3-3. The excess solute is then redistributed to the neighboring cell.
Each neighboring cell, receives a percentage of the total excess solute calculated for cell

"1,j,k" based on the fraction of liquid remaining in each neighboring cell.

If the cell suffers a negative change in the phase field (re-melting of the cell), then the
excess solute calculated is assigned to cell "i,j,k". It is important to note that the process
of assigning the excess solute to one cell is not in accordance to the physical
phenomenon, but it is done as a simplification to the problem. In most cases, most cells
throughout the complete simulation do not suffer re-melting of the solid phase and

therefore it is considered a valid approximation.



Mass transfer is not the only parameter that affects the velocity and evolution of the
solid-liquid interface, an example of this is curvature. The curvature effects and how
these are calculated for the solid-liquid interface are explained in more detail in the next

section.

3.3 Curvature of the Solid-Liquid Interface

In order calculate the curvature of the solid-liquid interface, Phase-evolution computes an
average phase field. Calculating curvature on the actual solid-liquid interface can provide
abrupt changes on the curvature values from one cell to its neighbors. These abrupt
changes can cause the curvature function to provide curvature values that are not
representative of the actual curvature of the solid-liquid interface. Section 3.3.1 explains
in more detail how an average phase field is obtained. This average phase field is then

used to calculate the values of curvature at every cell.

3.3.1 Average Phase Field

The phase field represented by fjjx at each cell is used to calculate an average phase field
at each cell (g;i). In the Phase-Evolution program, the average phase field function
assigns to each cell a weight factor. These weight factors multiply the solid fraction of

each cell.
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Figure 3-3, Weight Factors

Figure 3-3, shows the weight factors. The summation of all the weight factors adds up to
a total value of 3.9. The average phase field for cell i j,k is calculated as the sum of the
solid fraction of each cell multiplied by its corresponding weight factor which is then
divided by 3.9. The sum of all the weight factors are assigned to an average phase field

array. This operation is the repeated for every cell in the control volume at every time

step.

The weight factors where determined by creating a spherical solid-liquid interface. The
curvature function is then used to compute the curvature at every cell on the sphere. The
inverse of the curvature at each cell provides the radius of the sphere, which can then be
compared to the theoretical radius of the sphere. The best weight factors obtained from

this test are shown in Figure 3-4
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Figure 3-4, Weight Factors for a spherical nucleus
Figure 3-5 and 3-6, show the test sphere and a cross section of it. The inner part of the
sphere is assigned a phase field value of one (solid state), while the outer area is assigned
a phase value of zero (liquid state). All cells in between the solid and liquid phase will
have a phase field value between zero and one, corresponding to the fraction of solid in

each cell.

Figure 3-5: Test Sphere
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Figure 3-6: Cross Section of Test Sphere

The results of the curvature values obtained using the weight factors shown in figure 3-4

are presented in table 3-1.

Table No. 3-1: Curvature Results

Test | Delta | Radius | Theoretical | Total No. Pass Pass Pass Failures Average
Case Curvature. | of nodes | within | within | within (%) Curvature
No. 30% 50% 60%
(%) (%) (%)
1 0.25 3 0.33 2485 15 16 9.9 50 0.66
2 0.5 3 0.33 620 33 14 27 26 0.63
3 0.75 3 0.33 282 30 22 26 22 0.65
4 1.0 3 0.33 161 29 30 22 19 0.62
5 10.0 30 3.33E-2 161 29 30 22 19 0.062
6 1.0 4 0.25 308 31 25 20 23 0.48
7 1.0 5 0.20 408 22 23 24 31 0.39
8 1.0 6 0.17 659 25 22 27 27 0.32
9 1.0 7 0.14 840 22 27 16 35 0.29




As it is seen in Table 3-1, the average curvature produced using the weight factors shown
in figure 3-4 overestimated the theoretical curvature. The incorrect weight factors can
provide average phase fields that are not representative of the actual solid-liquid interface

as it is shown in figure 3-7.
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Figure 3-7: Average phase field using the weight factor for spherical nucleus.

The average phase field shown in figure 3-7 was obtained using the weight factors shown
in figure 3-4. As it is seen in figure 3-7 the average phase field does not reflect the
splitting that occurs at the tip of the dendrite. This over smoothening of the phase field is
because the weight factors used overestimate the contribution of its neighbors on the ijk

cell when computing the average phase field.
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Figure 3-8: Average and Actual Phase Field using the weight factors of Figure 3-3

The phase field shown in figure 3-8 show the average and actual phase field of a dendrite
with a split tip (anisotropy effects not taken into account). The average phase field
reflects what is occurring on the actual phase field. A wrong estimation of the average
phase field can be detrimental in the simulation of a dendrite, since curvature is an
important parameter in the calculation of interface velocity. The calculation of curvature

on the averaged phase field is explained in detail in the next section.

3.3.2 Computation of curvature on an average phase field.

Mathematically curvature can be defined as:

vg
K=V |25 3-6
(IVgI]( ‘

where,



e g is the averaged phase field
e V. (including the dot) is the divergence of a vector
e Vg is the gradient of the average phase field
e Vg/|Vg| is the unit vector of the average phase field.
A more detailed form of equation 3-6 for a three dimensional system (3-D) is shown in

equation 3-7:

_8:(8,+82)"8,(8. +8.)+8:(8.*8,)~ A8.8,8, + 8.8:8- + 8,8:8,) 5

K 3
(gi+g.+g.)

where

e K is curvature of the average phase field

e X,y and z are the coordinate directions within the control volume

e g, is the partial derivative of the average phase field "g" with respect to x

e g, is the partial derivative of the average phase field "g" with respectto y

e g, is the partial derivative of the average phase field "g" with respect to z

® g« is the second partial derivative of the average phase field "g" with respect
to x

® g, is the second partial derivative of the average phase field "g" with respect
toy

e g, is the second partial derivative of the average phase field "g" with respect

toxand z
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e g, is the second partial derivative of the average phase field "g" with respect
to x and y and
® g, is the second partial derivative of the average phase field "g" with respect

toyand z.

Equation 3-7 allows us to calculate the curvature value on the average solid-liquid
interface field. Curvature is only calculated on those cells that have a fraction of solid
greater than but not equal to zero and less than but not equal to one. When the simulation
is carried out with small cells (10 time smaller than the theoretical tip radius estimated by
Fisher and Kurz model) the results obtained are quite accurate.

Although the curvature effects of the solid-liquid interface are an important parameter in
the formation of the dendrite it is not the only one. Temperature is another important
parameter that influences the morphology of the dendrite. In the next section, temperature
and why the use of an isothermal conditions for the simulation of a dendrite is described

in detail.

3.4 Isothermal Condition

Temperature is another parameter that affects the growth of a dendrite. In any casting
system, a cooling process within the cast is present. The temperature variation from one
side of the cast to the other side, might be large, but if analyzed at a single grain these
temperature variations from one side of the grain to another are not likely to be that large.

It is this reasoning that allows us to assume that for the simulation of a single dendrite we
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can assume a constant temperature through the control volume of that the dendrite. Thus,

an isothermal condition is not a probable condition when analyzing large distances within
a casting system but can be assumed a good approximation for a single dendrite.

The temperature of the system for all our runs is assumed constant and below the melting

temperature of the host component, thus providing a thermal undercooling.

3.5 Stability Criteria and Time Step

The Fourier Number defines the stability criterion for our model. The Fourier number is

mathematically described as:
Fo=% (3-8)
s

where
® s is the characteristic dimension of the body,

e «a is the thermal or mass diffuisivity,

® tis the time step.[11]}

The Fourier number as described by equation 3-8 is useful for regular shapes with a
characteristic dimension, such as a sphere, cylinders, blocks, etc. In the case of dendrite
growth the final morphology is not defined or established beforehand. Dendrite growth is
also a very time dependent problem. Transient numerical analysis is therefore required to
simulate the growth of dendrites. The Fourier Number (Fo) describes a relationship

between the time step and grid size within a numerical mesh. If the grid size is chosen,



the time step is automatically set. In numerical transient conduction problems, the

relationship between time and grid spacing is described by the inverse of the Fo number.

sz

M=
a-At

(3-9)

where
. M is a number equal or greater than 2 for 1-D, to 4 for 2-D and 8 for 3-D,
° « is the diffusivity constant and

° At is the time step [11].

Our model uses equation 3-9 to determine the time step. The grid size is chosen to be
equal to the tip radius estimated by Fisher and Kurz model or 2, 5, 10 or 20 times smaller
than the estimated theoretical tip radius. From this theoretical tip radius we determine the
grid size, and thus the time step is calculated from equation 3-9. If one did not have a
theoretical estimation of the tip radius, one would reduce the size of the grid size until the
tip radius value obtained converges to a number.

The use of small time steps is inherent in problems that are solved using the explicit
method. An implicit solution would provide the use of larger time steps that one would
initially consider an excellent advantage. The disadvantage of having an implicit solution
in a non-linear problem like the one of simulating crystal morphologies is that the
implicit solution for the whole control volume is much more difficult to implement
computationally. The implementation of an implicit solution to a dendrite growth
simulation is not impossible but one would fine that solving the solution implicitly would
require more computational calculations in solving all the required equations even though
the time step is larger, thus our choice to simulate dendrite growth explicitly.
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3.6 Interface Velocity

All of the parameters described above influence the final shape and morphology of the

dendrite. The formula that puts all these parameters together is the velocity equation. The

interface velocity is mathematically described by equation 3-10:

where

V, =, (T, +CL ,-m,  +C, ,-m, .~T-k~T,) (3-10)

Viik is the velocity at cell i,j,k (meters per second)

| is the time enumerator

Tm is the melting temperature of the host component

Clijk_[ is the liquid concentration of the first alloying component (%owt)
miiq  is the liquidus slope from the phase diagram of the first alloying
component (K/%wt)

Clijk_z is the liquid concentration of the second alloying component
(Yowt)

I is the Gibbs-Thomson Coefficient (mK)

k is the curvature of the solid-liquid interface at cell ijk

Tijk is the temperature of the cell ijk (K).[5]

The melting temperature of the host component is a constant. Due to our assumptions of

isothermal conditions the temperature of each cell is also a constant. Thus, the thermal

supercooling for each run is constant.



The concentration of the first and second alloying components varies for every time step
following the laws of diffusion already explained above. These changes in concentrations

at every iteration cause the velocity for the cell to vary at every iteration.

Figure 3-9: Concentration contours.

Figure 3-9, shows a cross section of a growing dendrite and the iso-concentration
contours around the dendrite. The closer the contours are one to the other (near the tip)
indicate a stronger gradient of concentration. Beyond the transient growth period, the
concentration at the solid liquid interface near the tip becomes very close to the liquidus
concentration at the interface temperature, taking into account the capillary
undercooling[5]. At the steady state condition, the tip of the dendrite grows with a
constant velocity, thus indicating an equilibrium condition between temperature, the
concentration profiles in that region of the dendrite and a constant curvature.

The kinetic coefficient (ux) for most alloys is not known and is not easily determined,

although it can be approximated using equation 3-11:



where
o V; is the velocity of sound in the liquid alloy

o L is the latent heat of the alloy

o Vnm is the molar volume
o R is the gas constant and
o T is the melting temperature of the host component. {5]

Equation 3-11, is used as an approximation of the kinetic coefficient. The approximation
is always good as long as the growth happens in the capillary regime. In other words, the
effects of curvature tend to have a greater influence than the actual value of the kinetic
coefficient. In our present model, we use a kinetic coefficient value of 0.11 m/(sK).

The multiplication of the interface velocity with the time step allows us to determine how
the interface moves in every cell for every time step. In the next section, we explain in
more detail how the interface propagates within a cell and the conditions required to

propagate into surrounding cells.

3.7 Phase Evolution

When the initial phase field is completely flat and has no perturbation, the phase field
solidifies as a flat surface. In reality a completely flat surface with no perturbation is not
an easy task and requires extreme care and very well controlled experiments. The flat

phase field grows flat because there is no change in the concentrations ahead of the solid-
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liquid interface, there is no change in the curvature of the solid-liquid interface and there
is no change in the temperature of the system (in the case of our model). The initial
perturbation, produces a change in the curvature and a change in the concentration ahead
of the interface that leads to different velocities near the perturbation. These changes in
velocities lead to the re-melting of the perturbation (negative velocities) or the formation
of a dendrite (positive velocities).

The evolution of the solid-liquid interface is mathematically represented by equation 3-

12:

fo gt +——(fo") (3-12)

yk y

where
. f';« is the phase field value in cell i,j.k,
° 1 is the time enumerator,
° Viik is the velocity in the cell i,j,k (m/s),
° A is the grid size, in the present model the grid is cubic (m),

° At is the time step (s). [5]

Equation 3-12 shows that the new value of the phase field in cell i,j,k is equal to the old
value of the phase field plus the time step multiplied by the velocity calculated in that cell
and divided by the grid size.

When the velocity is negative in a cell, the fraction of solid is reduced (re-melting). In our
model re-melting only occurs in those cells that have a fraction of solid greater than zero

but less than one. In other words, once the cell is completely solidified our model does



not allow for re-melting of that cell. This approximation is possible because re-melting of
the solid-liquid interface does not regularly occur during solidification and because it
simplifies considerable the model. This still leaves the possibility that the change in phase
field be greater than the solid fraction availabie in that cell (re-melting). In this case, the
phase field of that cell is assigned a value of zero (completely liquid).

When the change in the phase field is positive (positive velocity), then the solid fraction
in that cell is increased. If the change in the phase field is greater than the allowable
liquid fraction to solidify the cell is assigned a value of one (completely solid).
Mathematically the change in the phase field can be greater than the grid size. In order to
avoid changes in the phase field that are greater than the grid size or greater than the
available liquid to solidify in that cell the maximum allowable change in the phase field
is calculated. This maximum allowable change is based on a thermodynamic equilibrium
condition. The maximum allowable change in phase field is compared to the change in
the phase field calculated by equation 3-12 and the smallest change in phase field is used
for that time step. The thermodynamic equilibrium condition is based on the fact that
solidification will not allow changes in concentration greater than that of the liquidus
concentration for the given system temperature. If the concentration value of a cell
reaches the liquidus concentration, it is considered to be at an equilibrium at which point
there is no driving force for that cell to re-melt or to solidify. In the present model the
liquidus and solidus concentration curves of the phase diagrams (Al-Si and Al-Cu) are

approximated to be straight lines.
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Figure 3-10: Phase Diagram of Al-Si-Cu, Isothermal Section at 955°C

In order for a cell that has no solid fraction start solidifying it has to have a neighbor that
is completely solidified. This is taken into account in the present model by the neighbor
function. The neighbor function checks all cells that have one face in common with the
cell under study. If the cell under study has one of its six neighbors completely solidified
then that cell under study is allowed to start solidification, otherwise, only changes in
concentrations for both alloying components are computed.

In order to compute the concentration values and phase field values near the walls of the
control volume a boundary condition function was required. The next section explains in
detail how the model deals with the calculation of concentration and phase field near the

walls of the control volume.
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3.8 Boundary Condition

The present model assumes periodical boundary conditions near the walls of the control
volume. In order to calculate the concentration values or curvatures at the walls of the
control volume one needs to know the phase field and concentration gradients at the wall.
These gradients require information on concentrations and phase field values on cells that
are outside of the control volume. Thus, mathematically the model uses the concentration
and phase field values at the opposite side of that wall. This creates a numerical effect of
an infinite control volume. When analyzing the solidification of a dendrite from sphere
this situation works quite well. It is also used for the sidewalls of the control volume
when analyzing the solidification of a dendrite from a flat plate with a perturbation.
Periodical boundary conditions are not as effective when dealing with the ceiling of the
control volume. When computing the concentration and phase field gradients at the
ceiling of the control volume, the boundary condition function uses phase field values
and concentration values that are two cell layers below the ceiling. In essence, the ceiling
of the control volume behaves like a mirror. If we had used a periodical condition at the
ceiling for a dendrite solidifying from a flat surface, the effect would be the growth of the

solid-liquid through the ceiling of the control volume.

In the last section of this chapter we will describe the effects of anisotropy and its

influence when not taken into account in the simulation.

7



3.9 Anisotropy Effects

Anisotropy is an effect, which describes a material that has properties that differ in
direction [12]. During solidification the dendrite can have directions of growth that are
favored over others, this is what is known as growth anisotropy [1]. When simulating

crystal growth the existence of a mesh (cell grids) also introduces an anisotropy effect.

Any simulation that uses a grid as part of the model of crystal growth introduces an
anisotropy effect on the growth. This effect of the mesh is considered negative and its
effect can not be eliminated. It is considered a negative effect since in a physical world
dendrites do not have the influence of a mesh during their growth. To actually eliminate
the influence that a mesh can have on the crystal growth is a substantial amount of work.
One way to eliminate this influence on the growth is by rotating the mesh. This ensures
that for every time step that the simulated crysial is allowed to grow the orientation of the
mesh will be on a different direction, thus eliminating a preferred growth direction. A
disadvantage of this method is that the implementation from a programming point of
view is not easy. Another disadvantage, is that the computational time required increases
substantially, thus reducing the size of the dendrite that can be modeled and increasing

the computer time required to model them.

Al-Si-Cu alloys can form dendritic structures in which anisotropy effects influence the
kinetics of the solid-liquid interface. These anisotropic properties influence the formation
of the dendrite. It has been shown that dendrite form in preferred crystallographic

directions as for example <001> for cubic crystal structure. The thermal and
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compositional gradients as well as the anisotropic effects determine the growth direction
of a dendrite. Our model is based on mass transfer (compositional gradients) and
anisotropy effects. [13]

Growth anisotropy was initially not taken into account by our model. Figure 3-11 shows

the effects of isotropic growth of a dendrite from a spherical nucleus.
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Figure 3-11: Anisotropy Effects
As it is seen in figure 3-11 the dendrite tip splits. In order eliminate this isotropic effect

the model calculates the normal unit vectors components in the x, y and z directions.
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where
e g, is the gradient of the average phase field in x
e g, is the gradient of the average phase field in y and

e g, is the gradient of the average phase field in z.

Similarly, the normal unit vector components in y and z are calculated where the
numerator changes for the gradient of the average phase field in y and z respectively.
The model then proceeds to calculate two angles. These two angles are the angles
between the normal vector to the solid-liquid interface and the z and x direction

coordinate system. These are mathematically calculated as follows.

@ = arccos(n,)

@ = arccos(n,) (3-14)

where

e phi (@) is the angle between the normal to the interface and the z coordinate
direction

e theta (0) is the angle between the normal to the interface and the x coordinate
direction

e arccos is a mathematical function that returns the angle in radians.

Once these angles are known the capillary undercooling is obtained as follows:
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Capillary _undercooling,, =T -(1-0.25-cos(4-¢,, )—0.25-cos(4-8,,))-k,, (3-15)

where
e [ is the Gibbs-Thomson coefficient
e cos is the mathematical cosine function
e phi is angle as calculated in equation 3-14 for cell i,j,k
e theta is the angle as calculated in equation 3-14 for cell i,j,k

® ki is the solid-liquid interface curvature for cell i,j.k.

Equation 3-15, is the new value of the capillary undercooling that is used in calculating
the velocity of the solid-liquid interface. Once the effects of anisotropy where taken into
account by our model the splitting of the dendrite tip did not re-occur. Examples of these
runs on dendrites growing from a perturbation of a flat surface will be presented in detail
in Chapter 4. Simulations on a spherical nucleus where not continued because the amount
of computer time required to produce a three-dimensional dendrite was considerably
greater. A spherical nucleus will grow six very similar dendrite arms, since all conditions
around the control volume are identical, Thus, the information provided by one of the
main arms would be the same for all other arms. Thus, simulating the growth from a
perturbation on a flat plate is equivalent to growing one of the main arms on a spherical
nucleus and by doing so we save computer time. More details on these results are

presented in chapter 4.
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Chapter 4: Results

4.0 Introduction

This chapter presents the results of a few runs performed with our model. The results are
analyzed and when possible compared to the results provided by Fisher and Kurz model
[1]. A complete description of Fisher and Kurz model of dendrite growth is presented in
Appendix “A”. The tip radius for each run is presented and the relationship between the
grid size and the tip radius obtained are also presented. Results on the conservation of

mass test are shown in this chapter.

4.1 Phase Evolution and Grid Size
Several runs where performed under the following physical and material parameters:

Physical Parameters:

e Grid Size: 1.28e-008 m.

e No. of grids in i and j coordinate direction: 74
e No. of grids in k coordinate direction: 74

¢ Initial concentration of Silicon: 5%wt.

¢ Initial concentration of Copper: 5%wit.

e Constant temperature of the system: 873
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e No noise is added to the system

Material Parameters:

e Kinetic Coefficient (m/(s*K)): 0.1

e Alloys Diffusion Constant Liquid host (m"2/sec): 3e-009

e Alloys Diffusion Constant Liquid element 1 (m~2/sec): 3e-009

e Alloys Diffusion Constant Liquid element 2 (m~2/sec): 3e-009

e Alloys Gibbs Thomson coefficient (m*k): 2e-007

e Liquid slope of element 1 (K/%wt use negative sign convention): -6

e Liquid slope of element 2 (K/%wt use negative sign convention): -3

e Solidus Slope of element 1 (K/%wt use negative sign convention): -50
e Solidus slope of element 2 (K/%wt use negative sign convention): -20
e Melting temperature of the host component (K): 933.3

e Periodical Boundary Conditions in i, j and not in k.

A theoretical value of the dendrite tip for the above physical and material parameters
where predicted using Dr. Artemev 2-D computer model. His model is based on Fisher
and Kurz model (Please refers to Appendix “A” of this thesis for further explanation on
Fisher and Kurz model). Dr. Artemev’s computer model provides results on tip radius in
a non-dimensional form, while Phase-Evolution provides the results in a dimensional
form. In order to compute the theoretical tip radius (dimensionally) a MathCad
spreadsheet was created. An example of this spreadsheet can be found in Appendix “B”.
According the Dr. Artemev’s computer model the theoretical tip radius was calculated to

be approximately 5.1E-7 m. As seen above, the grid size found under the physical

m”



parameters was taken to be forty times smaller than theoretical tip radius. Using Techplot
(Visualization software by Amtec Engineering, Inc) a cut of the 3-D simulation is

presented in Figure 4-1.
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Figure 4-1: Grid Size at 40 times smaller than the theoretical tip radius.

The results of this test indicate that the cell size was too small for the growth to occur.
The cell size for this run was 1.28e-008m. The time step computed according the Fourier
number was: 6.2866E-11 sec. Thus, the changes in phase field are so insignificant that
the growth is controlled by numerical uncertainty rather than by the physics of the
problem. As seen in Figure 4-1 in time the perturbation starts to disappear. This does not

mean that a cell size of 1.28E-008 can not be used, it just means that the initial nucleus is
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smaller than the initial critical radius required for the perturbation to be unstable as
described in Chapter 2. Under the same cell size with a larger initial nucleus the dendrite

would have grown.

Our second run was performed with a cell size that is approximately 20 times smaller
than the theoretical tip radius under the same conditions. The results of the phase

evolution are presented in figure 4-2.
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Figure 4-2: Cell size at 20 times smaller than the theoretical tip radius
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Under a cell size of 20 times smaller than the tip radius predicted by Fisher and Kurz
model, the cell is approximately 2.55E-8 m with a time step of 2.70938e-010 sec. This

size of cell size was also found to be too small for the nucleus to grow.

When the cell size was set to be approximately 10 times smaller than the theoretical tip
radius the results where found to be more interesting. At this cell size, the dendrite grew
and it was possible to obtain pictures of the morphology and concentration profiles in 3-
D. In order to analyze the tip radius a 2-D cut through the middle of the dendrite was
performed and the curvatures at the tip were measured. Figure 4-3 presents the dendrite

morphology as it evolved in time.
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Figure 4.3: Dendrite growth with a cell size 10 times smaller than the theoretical radius




Figure 4-3 shows a 2-D cut of the dendrite morphology of Aluminum 5% Silicon 5%
Copper alloys. The effective supersaturation taking into account both solutes is 0.11. The
effective superstauration is obtained using equation 4-2:

CS: _eff — CSI _lq (4-2)
CSl_hq (1 - k)

QSl_e_ﬂ' =

where

o G erris the effective concentration of Silicon
o C; jiq is the liquid concentration at the current temperature of the system

e k is the distribution coefficient [2].

The effective silicon concentration is computed as follows:

m ., -Mgap_qu @-3)

C. ,=C 0 +Cosut o
Si_eff Bulk _ Bulk _ ( m,__" Mgap-si

where

® Cpui_si is the concentration of silicon at time zero far away from the
solidifying solid-liquid interface

® Cpuik_cu is the initial concentration of copper far away from the solid-liquid
interface at time step zero

e m_cy the liquidus slope of copper (straight line approximation)

e mys; is the liquidus slope of Si (straight line approximation)

e mgap_.. is the copper miscibility gap at the current system temperature.
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e mgap_; is the silicon miscibility gap at the current system temperature.

From Figure 4-3, we can observe that in the initial growth (approximately 0.2
microseconds) the dendrite tip takes a very needle shape like morphology. As the growth
continues the tip essentially changes very little, but the sides of the primary trunk become
bigger. The sides of the primary trunk provided sites for interface instability that lead to
the formation of secondary arms. At approximately 0.6 microseconds, the dendrite has a
very well defined morphology with primary secondary and possible sites for the
formation of tertiary arms. The tertiary arms in our model are observed when the control
volume is bigger. The model provides results that describe very well the coarsening
effects of the secondary arms (unification of small secondary arms to form one big

secondary arm). This is consistent with experimental results.

Figure 4-4: Actual dendrite morphology



As it is seen in Figure 4-4 the biggest secondary arms are found at the bottom part of the
trunk (lower portion of the figure), while at the top very few secondary arms are

encountered. Figure 4-5 shows a three-dimension representation of a single dendrite.
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Figure 4-5: 3-D dendrite morphology.

Our computer model as part of its output file provides the concentration profiles that we

can graph. These profiles are presented in figure 4-6.
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Figure 4-6 Silicon Concentration Profiles

At time zero a layer of 7 %wit. silicon was set on the first 10 cell layers, as seen in figure
4-6A. This was done to avoid abrupt changes in the phase field during the transient
period. If this is not done, the flat surface around the dendrite could develop small



perturbations that will lead to other dendrite formation near the perturbation set by the
model. These small perturbations can grow at a very fast rate and influence the dendrite
morphology of the dendrite we are interested in. By assigning a concentration layer near
but not exactly the liquidus concentration of the alloy we slow down the transient growth
period. This is done because the initial concentration layer is required to diffuse before
solute is removed from the solid-liquid interface, allowing then, the growth of the
nucleus. The bulk concentration was set to 5 %wt. Silicon while the initial concentration
layer was set to 7% wt. Silicon. Thus, during the first iterations the concentration layer is
diffused from an area of high concentration (7% Silicon) to an area of low concentration
(the bulk area set to 5% Silicon). As the cells are solidified, they are assigned a solidus
concentration value at the system temperature. The solidus concentration value is
calculated by approximating the solidus line of the of the aluminium silicon phase
diagram by a straight line. Near the dendrite tips the concentration contour lines are a lot
closer to each other. The proximity of these lines indicates the regions of higher
concentration gradients. In these regions of high concentration changes is where the
growth occurs faster due to faster removal of solutes. The concentration profiles of
copper are very similar to those of silicon. The concentration profiles of copper are

shown in figure 4-7.
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Figure 4-7: Copper Concentration Profile

The concentration profiles of copper have the same shape of curves as the concentration
profiles of silicon. The initial concentration layer at time zero is of approximately 5.5%wt
copper while the rest of the system was set to have a bulk concentration value of 5%wt
copper. Figure 4-7D shows concentration contour lines. An interesting fact occurs at the
top with the concentration contour lines which is that they go through the roof of the
control volume, while at the side walls they are at the same height. This is due to the
periodical boundary conditions at the sidewalls of the control volume. If the dendrite

growth had been started from a homogeneous nucleus (at the center of the control



volume), then all the walls would have been setup with a periodical boundary condition.

The roof and the floor of the control volume are setup with a constant concentration value

of 5%wt copper.

Dendrite morphologies are not as difficult to obtain as one would initially think.
However, to obtain dendritic morphologies that actually are produced by proper
mathematical description of the physics behind the problem is a challenge all in itself.
For this reason a series of tests, were performed in order to assure that the dendritic tip
radius obtained from our model was independent of the grid size. The results are

presented in the following graph.
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The results shown on graph 4-1, indicate that the tip radius at diverse contour levels all

converge to a single value as the grid size is reduced. When the grid size is approximately

equal to the theoretical value predicted by Fisher and Kurz Model the tip radius increases

exponentially. The tip radius at several contour levels where measured using a graphical

visualization tool (Techplot).

The numerical data presented in Figure 4-7 is presented in Table 4-1:

Table 4-1: Grid Size Vs Tip Radius data at different contour lines.

Grid Size 0.2 to 0.05 0.4t00.2 08to 0.4 10t0 0.8

10 Greater 5.00E-06 1.971E-05 1.120E-05 6.422E-06 4.572E-06
Equal to 5.00E-07 2.206E-06 1.160E-06 6.735E-07 4.880E-07
2.5 Smaller 2.00E-07 8.850E-07 4.740E-07 2.740E-07 1.860E-07
5 Smaller 1.00E-07 4.677E-07 2.356E-07 1.334E-07 9.678E-08
8 Smaller 6.40E-08 2.842E-07 1.483E-07 8.472E-08 6.045E-08
10 Smaller 5.10E-08 2.190E-07 1.130E-07 6.600E-08 4.670E-08

1.0t0 0.9
4.148E-06
4.607E-07
1.770E-07
9.206E-08
5.660E-08
4.460E-08

Note: All values in meters.

A comparison of the percentage difference between the cellular model at marginal

stability and Fisher and Kurz Model is presented in Table 4-2.

Table 4-2: Parabolic Model vs. Cellular Model.

Grid Size Marginal Stability Cellular Model % Difference
Parabolic Tip Radius Tip Radius
10 Greater 5.10E-07 4.1478E-06 -713.30
Equal to 5.10E-07 4.6071E-07 9.66
2.5 Smaller 5.10E-07 1.7700E-07 65.29
5 Smaller 5.10E-07 9.2056E-08 81.95
8 Smaller 5.10E-07 5.6596E-08 88.90
10 Smaller 5.10E-07 4.4600E-08 91.25

Note: All tip radius in meters.



As it is seen in Table 4-2, all values are within 100% of the theoretical parabolic tip
radius. The closest measurement of tip radius occurs when the grid size is equal to the tip
radius. One of the differences with Fisher and Kurz model (Parabolic tip radius) is that
they assume that the tip of the dendrite preserves its parabolic shape. This is done for
simplification reasons, since the parabolic equation preserves its parabolic shape as the

dendrite grows. A dendritic tip radius does not necessarily preserve a parabolic tip.

Another test that was performed to determine that our model was in agreement with the
correct physical description was to check that the law of conservation of mass was

satisfied. This will be described in more detail in the next section.

4.2 Conservation of Mass

The law of conservation of mass states that for a fixed control volume the rate of mass
with respect to time is invariant. Thus, the total mass in the system at time zero is equal to
the total mass at time infinite as long as the control volume under study remains closed

and no leaks occurs.

In our model we created a conservation of mass function. At time step zero the
conservation of mass function takes the liquid concentration of silicon and multiplies it
by liquid fraction in each cell. At the same time step we take the solid concentration of
each cell and multiply it by the solid fraction of each cell, the summation of these two
terms provides us with the total concentration of silicon and copper in the system.

Mathematically this can be expressed as:

yk=Max
Concentration _total = ) g, -k-C}, . +(1-gi)-C, 1, (4-4)

k=0



Every time the model saves the information to the hard disk, it performs the summation
expressed by equation 4-4. We performed this test for a cell size 10 times smaller than
the theoretical tip radius estimated by Fisher and Kurz model. The results of this test are

presented graphed in graph 4-2.
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Graph 4-2: Conservation of mass vs. dendrite height

Graph 4-2, indicates that the total mass is preserved within 1.5 % of the total initial mass
within the control volume. As the dendrite grows we start having mass leakage and some
mass is lost due to the boundary conditions established at the roof and bottom of the

control volume.

Graph 4-3 shows the total mass leaked out of the system vs. the number of iterations

performed by the model to develop a complete dendrite.
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Graph 4-3: Mass Leakage vs. No. of Iterations

In graph 4-3 it is possible to see how as the number of iterations increase the percentage
of mass leaked out of the system increases exponentially. At less than thirty thousand
iterations, the percentage of mass leaked is due to rounding off errors. Between thirty
thousand and fifty thousand iterations the concentration profiles start going through the
roof of the control volume. At approximately fifty thousand iterations, the dendrite tip
starts going through the roof of the control volume, which is when the system starts
loosing a lot of mass and thus breaking the law of conservation of mass. This is not of
concern because the tip radius is measured before the concentrations profiles start

trespassing the roof of the control volume.

Another parameter that was required to analyze was the growth velocity of the dendrite.

The results are described in more detail in the next section.
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4.3 Growth Velocity

An important parameter that was verified to determine that the growth is consistent with
Fisher and Kurz model was the growth velocity of the dendrite. The growth velocity is

described by a non-dimensional parameter known as the Peclet number:

v-r,

Pc=—"(4-5
c 2-D( )

where

® ryp is the tip radius in (meters)

e D is the diffusion constant (m2/s)

e v is the velocity (m/s) [2].
According to Fisher and Kurz’s model the peclet number for an effective supersaturation
of 0.11 (5%wt. Silicon, 5% wt. Copper and 90% Al) is 0.11. Table 4-3 describes the
relationship of the Peclet number for a grid size that is approximately ten times smaller

than the theoretical tip radius.

Table No. 4-3
Approximately 10 times smaller grid size than the theoretical radius

Time iterations Grid Size Contour Tip Distance Velocity Peclet

Level Radius Number
(sec) (meter) (m) (m) (m/s)

5.20E-05 48000 5.10E-08 0.2t00.05 2.19E-07 2.96E-06 0.057 2.08
04t00.2 1.13E-07 2.96E-06 0.057 1.07
0.8to 04 6.60E-08 2.96E-06 0.057 0.63
1.0t0 0.8 4.67E-08 2.96E-06 0.057 0.44
1.0t0 0.9 4 46E-08 2.96E-06 0.057 0.42
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From Table 4-3, it is possible to see that the peclet number varies significantly between
contour levels for the same dendrite. This is because the tip radius varies significantly
with the fraction of solid in each cell. The velocity presented in table 4-3 is an average
velocity. It is not the local velocity at the tip. The average velocity is obtained by
determining the height of the nuclei and the height of the dendrite at the time step that the
dendrite was well developed but not touching the top wall of the control volume. This
provides us the total distance grown by the dendrite over a period of time. Dividing the
total grown distance by the total time provides us with an average velocity. The tip radius
is also the average radius at the tip of the dendrite. Techplot outputs at a specified contour
level the approximate curvatures at specified number of points (set by the user) on the
solid-liquid interface from which we can calculate the average tip radius. These two
parameters and the diffusion constant provide the peclet number. The peclet number
provided by our model is considerable larger than that provided by Fisher and Kurz
model. One possible cause of this difference between the peclet number determined by
our model and that provided by Fisher and Kurz is that our tip radius is not assumed to be

of a parabolic shape.



Dendrite Tip Radius vs. Growth Rate
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Graph 4-4: Dendrite tip radius vs. growth rate

Graph 4-4 shows the relationship of the growth rate of the dendrite with respect to its tip

radius. As seen in this figure as the growth rate decreases the dendrite tip increases.

The last chapter of this thesis presents the conclusion of our research and results. It also
presents some possible future work required to obtain a better understanding of the

results and possible improvements to the model.



Chapter 5: Conclusion &
Future Work

5.0 Introduction

Chapter 5, is the final chapter of this thesis. This chapter presents the conclusions of our
work on dendrite growth using the cellular model. The chapter outlines possible areas
that could be examined to increase the accuracy and performance of our dendrite growth

model.

5.1 Conclusions

One of the important aspects of our research was the use of the cellular model to simulate
the growth of a dendrite. The results presented in this thesis allow us to conclude that the
cellular model is a feasible way to simulate dendrite growth in three dimensions. The size
of the control volume that we simulate is limited by the computer system running the
simulation and not by the complexity of the solid-liquid interface of a dendrite. The
results show important results such as the formation of secondary, and in some cases,
tertiary arms. The correct choice of cell size is also of great importance and has to be
carefully picked by means of simpler analytical techniques before valuable computer
time is wasted. It was shown that simulations with cell sizes that are larger than the
theoretical tip radius predicted by Fisher and Kurz model can also reproduce dendrite
morphologies with a tip radius that is in complete disagreement with theoretical and

experimental results.



Another important aspect of the results presented by this thesis is how the model can
predict the concentration profiles around the dendrite for a tertiary system. This is
important because it allows us to see the influence of a third alloying component on the

growth of the dendrite (solute undercooling).

One of the most challenging aspects of the model was in determining the curvature of the
solid-liquid interface. The use of the “correct” weight factors for determining the average
phase field from which curvature of the solid-liquid interface is calculated showed the
influence that capillary undercooling has on dendrite growth. The results show that the
use of the “sphere test” in the determining the correct weight factors is not necessarily the
best test to use, since it can produce weight factors that produce average solid-liquid

interfaces that are not representative of the actual interface morphology.

This thesis showed how anisotropy plays an extremely important role on dendrite tip
morphology. Not taking anisotropy into account would have resulted on the splitting of
the dendrite tips, thus prohibiting the comparison of our model to Fisher and Kurz, or

other analytical solutions.

5.2 Future Work
The mathematical and computational model described in this thesis can be improved in
many ways. In this last section of the thesis it is out intention only to mention a few of the

ways that the model can be improved.



The curvature function can be substantially improved by determining if the weight factors
used are the most optimum in the analysis of dendrites. The development of curvature
test that describe the curvature not only of spheres but of dendrite-like structure for which
the exact curvature is known could be developed and set as a standard problem set to
serve as a guide line in determining the accuracy of curvature functions. Other methods
(mathematical approximation) for calculating curvature could be easily implemented into

our model by replacing the curvature function in Phase Evolution.

The model can be modified to take into account temperature variations through the
development of the dendrite. Runs where the temperature is not maintained constant but
that is constantly dropping at a fix rate can be easily implemented. The use of a constant
temperature drop in the model would provide results on dendrite tip that are more

realistic with what is seen in the real physical world.

Further analysis of secondary arm spacing can be also examined. Analytical results

provided by Fisher and Kurz can serve as a basis of comparison to the results provided by

our model.

At some point in time, during the development of future work, experimental data that
provides physical results that validate our computer model will be required. Experimental
analysis will provide insights into other physical parameters that are required to be

modeled and that could improve the accuracy of our computational models.
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Appendix A

Fisher and Kurz Model of Dendrite Growth
in Undercooled Alloy Melts.[1]

1. Introduction

The objective of this appendix is to describe and explain the mathematical relationship
that describes the evolution of a dendrite tip in an alloy. Fisher and Kurz’s model of
dendrite growth is used as a comparison and guideline to the results obtained by the

cellular model (Phase Evolution Program) described in this thesis.

2. Extremum vs. Marginal Growth

Figure B-1 shows the relation of the growth rate vs. tip radius. This figure shows the sum
of the capillary and diffusion effects. As it is seen in figure B-1, the figure shows a
maximum point indicating the existence of a maximum growth rate with a specific tip
radius (R.). This value of tip radius (R.) represented a unique solution in determining the
value of the tip radius of a dendrite, since the derivative of the growth equation set to zero

would provide a unique solution.
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Figure B-1: Growth Rate vs. Tip Radius

It was not until 1977 when Muller and Krumbhaar argued that the dendrite grows at the
limit of stability. This is represented in Figure B-1 as the R point. This stability criterion
is known as the marginal stability criterion. Mathematically it is represented by equation

(B-1):

R, =4 (B-1)

where

® R is the tip radius at the marginal stability criterion,

® 2, is the stability limit.

Fisher and Kurz’s mode! compute the total undercooling as a function of the thermal,
solute and capillary undercooling. Thus, in order to find the tip radius according to the
marginal stability criterion one would need to determine the total undercooling. The total

undercooling is described by equation B-2:
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AT =AT, + AT, + AT, (B-2)

where

AT, is the thermal undercooling,

AT, is solute undercooling,

AT, is the curvature undercooling and

AT is the total undercooling

The thermal undercooling in Fisher and Kurz model is represented as a function of the

Ivanstov solution for a paraboloid dendrite tip:

AT, =6,1(P) (B-3)

where
e [(P)) is the Ivanstov function.
e P, is the thermal Peclet number

e 0O, is the thermal undercooling (Ah¢/c, where c is the volumetric specific

heat and Ahy is the latent heat of fusion per unit volume.)

The Ivanstov solution is mathematically expressed as:

P
1

P+—5—

P+...

(p)= (B-4)

P+

1+
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where

e P is the Peclet number

Similarly the solute undercooling is described mathematically as:

AT, =mC, -(1-A(P)) (B-5)
where

e Co is the initial alloy concentration
e m is the liquidus slope

o A(P)= (l‘pI(Pc)]-l

The last term in equation B-3 is the capillary undercooling. The capillary undercooling is

determined using equation B-6:

2-T
AT =< (B-6
r =R (B-6)

where
e [ is Gibbs Thomson coefficient
e R is the tip radius.

Equation B-2 to B-6 defines the total undercooling. These equations are not enough to
find a unique solution to the problem of determining a specific radius to a specific total
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undercooling value. This is where the stability criterion plays an important role. The
stability criterion developed by Langer and Muller-Krumbhaar provide a solution which

results are found to be very close to experimental results.

Equation B-1, proposed that the tip radius is equal to the wavelength of a perturbation in
a planar solid-liquid interface. The stability limit of the perturbation is described by

equation B-7.

where

e [ is the Gibbs Thomson Coefficient

e ¢ is the degree of constitutional undercooling.

Using equation B-1 and B-7 one determines that the tip radius of the dendrite is

computed as:

R=2r}——m—
(mG -G

where,
e mGc is the liquidus temperature gradient

e G is the imposed temperature gradient.
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As seen in equation B-8 the degree of constitutional undercooling is the difference
between the liquidus temperature gradient (mGc) and the temperature gradient imposed
at the interface (G). Thus, as long as the liquidus temperature gradient is greater than that

of the temperature gradient imposed at the interface the perturbation will grow.

A flux balance determines the concentration gradient (Gc) in front of a perturbation.

Mathematically this flux balance is shown in equation B-9:

V.-C,-(l1-k)=-D-G. (B-9)
where

e k is distribution coefficient,

e (Cl s the liquid concentration at the solid-liquid interface (perturbation),
e V is the growth velocity of the perturbation,

e D is the diffuisivity constant,

e Gc is the concentration gradient.

Using the Peclet number and isolating velocity in terms of the Peclet number one obtains:

2-D-P.

V= (B-10)

where

e D is the diffusion constant,

e Pcis the Peclet number
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e Ris the tip radius.

Inserting equation B-10 into equation B-9, one then obtains the concentration gradient

ahead of the tip radius as:

G, -Z2F(1-h)C,
R

(B-11)

where,

e Ciis the liquid concentration which can be expressed as a function of the

solute supersaturation (C, = Co/(1-Supersaturation(1-k)))

e Ris the tip Radius,

e P.is the Peclet number

o K is the distribution coefficient.

Now that the concentration gradient ahead of the tip radius, the temperature gradient
ahead of the dendrite tip has to be also defined. The temperature gradient has the same
structure as that presented by equation B-11. Thus, the temperature can be

mathematically expressed as:

where

® P, is the thermal Peclet number

® Ris the tip radius,
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e C is the volumetric specific heat
e Ahg latent heat of fusion per unit volume.

The temperature gradient is determined not only on the liquid phase but also at the solid
phase. Assuming a similarity in the thermal conductivity between the solid and the liquid
phase (K = K;), and assuming that Ivantsov dendrite is isothermal it is determined that G

(bar) is half of the temperature gradient in the liquid phase ahead of the interface.
Thus the tip radius can be expressed as:

r

1 -
4

R=r 2P mcC G r) @) =

where

o A(P) = I/[1-(1-k)I(P)]

e K is the equilibrium distribution coefficient,
e M is the liquidus slope

e P, is the concentration Peclet number

® P, is the thermal Peclet number

® 0O is the thermal Peclet number

® C, is the is the initial alloy concentration

e I is the Gibbs Thomson coefficient
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From analyzing equation B-13, the only unknowns are the Pt and Pc. The solute Peclet
number and the thermal Peclet number are related by the ratio of the thermal to mass

transport diffusion constant as shown in equation B-14.
Pc=Pt-Z (B-14)
D

where,
e ais the thermal diffuisivity,

e D is the mass diffusion constant.

The only unknown is then the product of VR (Peclet number). The velocity and the tip
radius are related as shown in Figure B-1, thus for every velocity there is a specific tip
radius for a given supersaturation. Experimental results show that the tip radius and the

velocity occur at the marginal stability criterion or close to that point.
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Input Parameters and Results of Andreis Mathematica code:

Input Parameters:
Temperature :=873.— 273.15In Celsius
M| _cy =26 Copper Liquidus Slope
k :=0.13 Distribuition coefficient

:1=-6.59 _ . -
™ _si Silicon Liquidus Slope
C 5.cu ‘=5 Bulk Concentration of Copper
C 5.si ‘= 5. Bulk Concentration of Silicon
Ms si =~ 50.30 Silicon Solidus Slope
mg ., ‘=-19.85

Copper Solidus Slope
D:=3-10"° Diffusivity Coefficient
Gibbs_thomson :=2.0-10"

Calculation of %wt of Si:

In Liquid state:
._ (Temperature — 660)
X Liqsi = X Liq_si= 9-127
My si
._ (Temperature — 660)
X Liq_cu ™= X Liq_cu=23-135
My cu
In Solid State:
._ (Temperature — 660)
X Sol_si '~ xSol_si = 1.196
ms si
._ (Temperature — 660)
X Sol_cu '~ X Sol_cu ® 3.03
Ms cu
Calculation of Miscibility gap:
Miscb_gap_si =X Liq_si™ Xsol si Miscb_gap_si = 7.932
Miscb_gap cu =X Lig cu™ Xsol cu Miscb_gap_cu = 20.104

Calculation of Effective Bulk Concentration:

Input Parameters:
:my ,-Miscb_gap_cu :

Cg; e =C o+ C
Si_effective o.si o.cu (ml_si-Miscb_ga D_si |

c Si_effective © 10
Calculation of Supersaturation for Silicon & Cu:

X Liq si™ Cosi:
(1-k)

Supersaturation_si :=
X Liq_si
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C

(XLiq si— Co.cu’

Supersaturation_cu =
XLiq cu(1—K)

Supersaturation_si = 0.52

Supersaturation_cu = 0.205

Effective Supersaturation:

iCq; coa= Xpio o
Supersaturation_effective = Si_effective Liq_si

X Liq_si'( 1-k)

Supersaturation_effective = 0.11
Changing from Non Dimensional values to dimensional values:

Input parameters from Andreis Code:
R:=133.247

Non Dimensional Tip Radius

Curv :=..1..
R
Curv = 7.50510 >

Non Dimensional Curvature value
V:=0.00165105

Non Dimensional Velocity

Length Scale  Ic :=——ioes_thomson Ic = 3.82610 °
i-Miscb_gap_si my o

Thus:

tip_radius :=IcR tip_radius = 5.09810
Thus: Curvature :=—-—l-—-- Curvature = 1.96 l'lo6

tip_radius
Velocity Scale
-D-Miscb_gap_si ‘m;|
Ve:i= = Vc=0.784
Gibbs_thomson
Velocity tip:=VeV  Velocity_tip = 1.29410

Theoretical Peclet Number:  Pc:= (Velocuty_tzlpl-)up_radlus ) Pc=0.11
Experimental Peclet Number vel_exp :=0.025714 tip_exp = 1.77.10”7
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Pc_exp := (Vd_e"zp;;' PSp) Pc_exp = 0.759
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Phase Maker — Appendix C

#include <iostream.h>
#include <stdlib.h>
#include <fstream.h>
#include <math,h>
#include <iomanip.h>

main()

{

/‘

Programmer: Marcias J. Martinez
Date: July 24th 1998

Supervisor: A. Artemev

Name of the Function: Phasemaker

Purpose:

The purpose of this function is to create a phase field. The location of the center of this phase field can be set by the user to be at the center or at the corner of the
control volume The phase field is created in order to test the curvature function, The values of the phases are between 0 and 1. A phase value of O represents a
completed liquid cell while a phase value of | represents a completely solidified cell.

The Phase field is created by analyzing a set of random number at every cell. The random number locations are compared to the specific radius of the sphere (set by

the user). If the a point is within the radius is considered a solid (1), while outside of the radius is considered a liquid (0). The fraction of liquid to solid (points within
to outside the radius) is considered the phase fraction.

Modification of October 31 1998,
We included the posbility of creating a flat plate phase field with a disturbance of the middle of the plate.

Madification of Nov 23 1998

Since the phase evolution model seems to be providing propper results I decided to have the phase maker be able to create a phase that had different number
of cellsin I, J,K So that K could be larger (so that the dendrite have space to grow) while the 1 and J directions are not necessarily as large.

\
Modification of Nov 27 1998

We added all the material parameters that phase evolution uses to phase maker, since that way we can have them all read as part of an input file.
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Phase Maker — Appendix C

Modification of March 24th 1999

I needed to add a variable to this program so that I can change the width of the cell from 1 cell to a3 cells width.

// INITIALIZATION OF FILES

ofstream fout("phase.dat"); // Compatible file used to be read by TechPlot

ofstream curvout("phase.in"); / The actual phase field file to be read by the curvature function

if{!fout){
cowt<< " Cannot open output file\n";
retumn |;
if{'curvout){
cout<< " Cannot open output file\n";
retum 1;
}
// VARIABLE DECLARATION
int i;
int j; // 3-D integer for each cell
intk;

int p; // number of iterations;
int max_ij, max_k;

float x, xrand; // The absolute x- coordinator of a point wrt to the origin of the control volume

float y, yrand; // The xrand represent the random generator position of a point with respect to its cell.

float z, zrand,;

int liquidcounter; // Number of points that are considered liquid within a cell

int solidcounter; // Number of points that are considered solid within a cell
int points;
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Phase Evolution — Appendix C

void conserv_mass_function(double gzone_new[MAX_SIZE][MAX_SIZE)[MAX_SIZE),double
ct_ligelel_new[MAX_SIZE)[MAX_SIZE][MAX_SIZE],

double ct_ligele2_new[MAX_SIZE][MAX_SIZE][MAX_SIZE}, alloy alloys,
int max_ij, int max_k, int counter);

void Averagephase(double gzone[MAX_SIZE][MAX_SIZE}I[MAX_SIZE], float gavg{MAX_SIZE|[MAX_SIZE][MAX_SIZE]},int max_ij, int max_K,
int index[6], int Boundary_boolean);

void velocity function(alloy alloys, int max _ij, int max_k, float Temperature,
double curvaturearray[MAX_SIZE]J[MAX_SIZEJ{MAX_SIZE]},
double velocity[MAX_SIZE][MAX_SIZE](MAX_SIZE],
double ct_ligele|[MAX_SIZE][MAX_SIZE)[MAX_SIZE],
double ct_ligele2[MAX_SIZE][MAX_SIZE][MAX _SIZE),

int velocityflag, int counter, int headerflag,
double gzone[MAX_SIZE)[MAX_SIZE){MAX_SIZE));

void curvature_function (double gzone[MAX_SIZE)[MAX_SIZE][MAX_SIZE], float gavg[MAX_SIZE]}[MAX_SIZE][MAX_SIZE],
double curvaturearray[MAX_SIZEJ[MAX_SIZE][MAX_SIZE]}, int index[6), int max_ij, int max_k, int points,
float delta, float radius, alloy alloys, int Boundary_boolean,float
curvaturearray_old[MAX_SIZE){[MAX_SIZE][MAX_SIZE] ),

void Boundary_Condition(int i, int j, int k, int index[6), int max_ij, int max_k, int Boundary_boolean);
int neigbour_function(double gzone[MAX_SIZE]J[MAX_SIZE][MAX_SIZE], int i, int j, int k, int index([6], int max_ij, int max_k,int
Boundary boolean);

float time_step_function(float const delta, alloy alloys);
void filesave_function(int counter, int i, int j, int k, int max_ij, int max_k, double gzone[MAX_SIZE)(MAX_SIZE]J[MAX_SIZE],
double gzone_new[MAX_SIZE]J[MAX_SIZE][MAX_SIZE], double curvaturearray[MAX_SIZE][MAX_SIZE][MAX_SIZE],

float gavg[MAX_SIZE}{MAX_SIZE}[MAX_SIZE], double velocityMAX_SIZE}[MAX_SIZE}{MAX_SIZE],
float Total_time, float time_step, int tecplotflag, alloy alloys,
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Phase Evolution - Appendix C

float theta_function(double gzone new|[MAX_SIZE][MAX_SIZE]J[MAX_SIZE], int x, int y, int z);

int Temperature_range(alloy alloys, float Temperature, double ct_ligele][MAX_SIZE)[MAX_SIZE]}[MAX_SIZE),
double ct_liqele2[MAX_SIZE)[MAX_SIZE])[MAX_SIZE}),

void Shift_down_function(double gzonefMAX_SIZE][MAX_SIZE}[MAX_SIZE),double gzone_new[MAX_SIZE][MAX_SIZE][MAX_SIZE],

double ct_ligelel_new[MAX_SIZE][MAX_SIZE)[MAX_SIZE], double
ct_ligelel[MAX_SIZE][MAX_SIZE])[MAX_SIZE],

double ct_ligele2_new{MAX_SIZE][MAX_SIZE][MAX_SIZE], double
ct_ligele2[MAX_SIZE][MAX_SIZE]{MAX_SIZE),

int counter, int max_ij, int max_k);

void noise_function(double gzone[MAX_SIZE]J[MAX_SIZE){MAX_SIZE]}, int max_ij, int max_k);

main(){
/* Programmer: Marcias J. Martinez
Start up Date: August 17 1998
Last modified: Nov 5th 1998
Version: 1.00.001
Supervisor: A. Artemev
Name of the function: Phase Envolution

Purpose:
To determine the morphology of a dendrite, having an initial concentrations and phase field.
The evolution of the dendrites morphology is based on flicks diffusion laws.

Maodification of Nov 4rth.
We found that the cells due to the neighbouring funciton where being allowed to solidify
without these having a fully crystallized neighbour. So we modified this function.

Modificaiton of Nov 5th
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Phase Evolution — Appendix C

cause the concentration to fluctuate and could provide negative concentrations which is
physically impossible. Thus we changed it to 0.99999

All these changes where taken into account during this revision of Phase Evolution.

Modifications of February 18th

1. From the modification of Febraury 8th it was found that the concentrations function
was not completely correct. Prof. Artemev found that I was neglecting the component
transport. From the discusion we had February 17th we needed to redo the concentrations
function.
Phase Evolution 26 is basically different from Phase Evolution 2. in that this error
is solved.
This will allow us to run the simulation at a much faster rate. In other words at a bigger
time step.

The Transport equation used was Equation (3) of his article.

Modification of March 3rd 99

1. When Analyzing the tip raidus | realized that the curvature value that 1 was outputing to the file
had the anysotropy factor already taken into account. Thus I had to creat a curvature array old
that does not include the anisotropy values. This will allow me to compare tip radis with
the analytical data obtained from Andreis Code.

Modification of March 24th 99

1. [ needed to add an extra output file of information at the velocity
equation in order to determine what factors affect this equation, to see
what are the causes that the dendrite tip is growing in a needle shape form.

Modification of March 31 99
1. Prof. Artemev asked me to do a run with a single Al-Si only and the problem
is that the program gave negative concentration in the Cu array.
So we add a flat where EL2-flag is equal to one then we calculate the
concentration profile of this element, otherwise we don't.
Also we make sure that the liquius slope of the second compoent are zero
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Phase Evolution — Appendix C

to avoide it affecting the velocity..

Modification of April 2nd 99
1. Prof. Artemev did not agree with the fact of adding the e2-flag.. | explained
that if we did not do that we would obtain a negative concentration in Cu due
to the change in the phase field and he ageed. So instead of using the Cs(Temp)
I will be modifying the concentration function and replacing Cs by (1-k). Where

kdistr (to distinguish it from counter k) is distribuition coefficient and has a value
of 0.13.

Maodification of April 5th 99
1. With PE-V2 we eliminate the mass transport to cells that only have a point
or a line in common with the center cell.
2, With PE-V2-2.exe we add another feature, this feature is that the first 10 cells
of the CV. acutally have the liquidus concentration assigned to them,

Modification of April 9th 99
1. After analyzing some of the cells, we realized that it seems that the code
is breaking the law of conservation of mass. This is because at some cells
the ijk value is not being reduces, which is extremely strange. Thus, it is
possible that this is occuring because of floating to double values of the
variables. The changes will be made to the Concentration function.

Modification of April 21st 99
It was seen with previous runs that in terciary system one coutd peak the values of
concentration that would produce remelt. When the program is not capable of taking into
account the remelting of completely solidified cells then the dendrite does not grow nor
does it disaappear. Remelting of cell that are partially solidified is possible but not of’
those that are completely solidified. Thus I added the option that the 1st 10 layers
one could peak concentraitons based on temperature (liquidus concentration or based on
concentration values submitted by the user.

Modification of May 3rd 1999,
Addition of an extra function that basically computes the total mass every n number
of iterations. That way we can calculate if the conservation of mass is being violated
This is done by multiplying each cell with the solid fraction by its corresponding
solid concentration and the liquid fraction by the liquid concentration and then
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Phase Evolution — Appendix C

// Variable Declaration for Filesave function

char fileName[40];

char *baseFileName="newphase"; // Base File Name
char stop;

// Editing of file name command.
sprintf (fileName, "%s%d.txt", baseFileName, counter);

// Opening of file name
ifstream retrieve;
retrieve.open(fileName, ios::app);

if{!fileName){
cout<< "Can not open file \n";
{// Handle error
cin >> stop;
exit (0);
}// End if of filename

// Output to the screen that we are in recovery mode.
cout << "PHASE EVOLUTION IS RECOVERING FROM AN OLD RUN" << "\n";

{/ At this point we start reading the data in and introducing it in the respective
// variables

retrieve >> recover_bool >> "\n";

retrieve >> recover_bool >> counter >>"\n";

retrieve >> recover_bool >> Temperature >> "\n";

retrieve >> recover_bool >> Total_time >> "\n";

retrieve >> recover_bool >> time_step >> "\n";

retrieve >> recover_bool >> alloys.kinetic_coefficient >> "\n";

retrieve >> recover_bool >> alloys.Gibbs_thomson >> "\n";

retrieve >> recover_bool >> alloys.mlelel >> "\n";

retrieve >> recover_bool >> alloys.mselel >> "\n";

retrieve >> recover_boo! >> alloys.msele2 >> "\n";

retrieve >> recover_bool >> alloys.mlele2 >> "\n";
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Phase Evolution — Appendix C

retrieve >> curvaturearray _old(i](j](k];
retrieve >> velocity[i][j](k);

retrieve >> ct_ligelel[i][j)(kl;

retrieve >> ct_ligelel_new[i][j](K];

retrieve >> ct_ligele2(i](j)(k];

retrieve >> ct_ligele2_new[i](j][k];
} // end for for recovery loop

recover_bool = 'R"; // This is to make sure that it does not go in and ask for the information
// again

// Output to the screen that we are in recovery mode.

cout << "PHASE EVOLUTION IS RECOVERING FROM AN OLD RUN" << "\i";

cout << "Press the number one to continue: *;

cin >> stop;

}/! End if for recover_bool = R

/I INPUT PHASE FIELD
// The Initial phase field is taken from another program known as PHASEMAKER.EXE

// This initial field is then read into the program from phasein.txt file
if (recover_bool !="R')}{

ifstream indata;
indata.open("phasein.txt"); //open file for input

if (!indata){
cout<< " Connot open file\n";
{/ handle error
cin >> stop,;
exit(0);
} // End if

// Input of the initial four variables in the Phase.in file into its corresponding variables
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Phase Evolution - Appendix C

/I cout << "Solidus Slope of element 1 (K/%wt use negative sign convention): " << alloys.mselel <<"\n";

prop << "Solidus Slope of element 1 (K/%wt use negative sign convention): " << alloys.mselel <<"\n";
indata >> alloys.msele2;

/I cout << "Solidus stope of element 2 (K/%wt use negative sign convention); " << alloys.msele2 <<"\n";

prop << "Solidus slope of element 2 (K/%wt use negative sign convention): " << alloys.msele2 <<"\n";
indata >> alloys.Temp_melt_host;

!/l cout << "Melting temp—eralure of the host component (K): " << alloys.Temp_melt_host <<"\n";
prop << "Melting temperature of the host component (K): " << alloys.Temp_melt_host <<"\n";

// THIS SECTION WE WOULD NEED TO INCLUDE AS VARIABLES IN THE INPUT FILE
indata >> fileint;

{/cout << "Every how many iterations would you like to safe the information; "<< fiteint << "\n";
prop << "Every how many iterations would you like to safe the information; "<< fileint<<"\n";

indata >> Boundary_boolean;

//cout << "Boundary Conditions <0= PERIODICAL IN [,J BUT NOT in K | 1=ALL PERIODICAL>: "<< Boundary_boolean <<"\n";
prop << "Boundary Conditions <0= PERIODICAL IN 1,J BUT NOT in K| 1=ALL PERIODICAL>: "<< Boundary_boolean <<"\n";

indata >> Matrix_boolean;

/lcout << "Would you like to save the phase field in matrix form: <1=No|2=Yes>" << Matrix_boolean << "\n";
prop << " Would you like to save the phase field in matrix form: <1=No|2=Yes>" << Matrix_boolean << "\n";

indata >> velocityflag;

{lcout << "Would you like to save the velocity information in a file: <I=Noj2=Yes>" << velocityflag << "\n";
prop << "Would you like to save the velocity information in a file: <I=No|2=Yes>" << velocityflag << "\n";

indata >> alloys.kdistr;
/fcout << "Distribuition CoefTicient (k): "<< alloys kdistr <<"\n";
prop << "Distribuition Coefficient (k): "<< alloys.kdistr <<"\n";

indata>> flayerflag;
/lcout <<"First 10 cell layer with a conct equal to the liquidus conct? <1=No|2=Yes>"<< flayerflag<< "\n";
prop <<"First 10 cell layer with a conct equal to the liquidus conct? <1=Noj]2=Yes>"<< flayerflag<< "\n";

if (flayerflag ==1){

indata >> ct_layerl;
indata >> ct_layer2;
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Phase Evolution - Appendix C

ct_ligele2[i][j][k] = ((Temperature - alloys.Temp_melt_host)/(alloys.msele2));
ct_ligele2_newl[i][j]{k] = ((Temperature - alloys.Temp_melt_host)/(alloys.msele2));
ct_ligele1{i][j][k] = ((Temperature - alloys. Temp_melt_host)/(alloys.msele1));
ct_ligelel_new[i}[j](k] = ((Temperature - alloys. Temp_melt_host)/(alloys.mselel));;

llet_ligele2_new(i}[j][k] = ((Temperature - alloys. Temp_melt_host)/(alloys.msel¢2));
} // End if

}// END FOR
/1 Close of INPUT FILE
indata.close();

/I INITIALIZATION OF TOTAL TIME VARIABLE
Total_time =0;
counter =0;
headerflag = 2; // For the velocity function

// CALCULATION OF TIME STEP
// It is important to note that this initial time step is based on the stability criteria
time_step= time_step_function(delta, alloys); // This calls the time step function
time_step = time_step *0.01; // The multiplication by 0.001 is to assure that is below the
/1 stability criteria. After it reaches 1/3 of the size of the

// control volume it will change to a larger time step.

tecplotflag = 1; /! Sets the TECHPLOT Flagto |
timeflag = 0; // Sets the timeflag to 0;

} // END IF of Input phase when Recover boolean is NOT equal to R

do{

/{ CALL OF THE PHASE EVOLUTION FUNCTION
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Phase Evolution — Appendix C

/1 Oct: 12th 19981 included into the phase evolution a check such that time step* velocity is not greater than
// than delta for that cell.

/1 If I do this I am thinking that the sphere might not grow evenly.

phase_evolution(max_ij,max_k, gzone,gzone_new,curvaturearray, gavg, velocity, Total_time,
time_step, tecplotflag, counter, delta, fileint, index, Boundary boolean,
ct_liqelel _new, ct_ligelel, ct_ligele2_new, ct_ligele2, alloys, Temperature),

// CALCULATION OF CURVATURE

curvature_function(gzone_new, gavg, curvaturearray,index, max_ij, max_k, points, delta, radius,alloys, Boundary _boolean,
curvaturearray_old);

/1 CALCULATION OF CONCENTRATION

Concentration_function(max_ij, max_k, time_step, delta, gzone_new, gzone, alloys, Temperature, index,
ct_ligelel _new, ct_ligelel, ct_ligele2_new, ct_liqele2,Boundary_boolean);

/{ CALCULATION OF VELOCITY

velocity_function( alloys, max_ij, max_k, Temperature, curvaturearray, velocity, ct_ligelel, ct_liqele2, velocityflag, counter, headerflag,
gzone);

/I CALLS FOR THE SAVE FUNCTION TO SAVE ALL THE VALUES

if(counter % fileint == 0.0)§

for(i=0; i <= max_ij; i++)
for(4=0; j <= max_ij; j*+)
for(k = 0; k <= max_k; k++) {
filesave_function( counter, i, j, k, max_ij, max_k, gzone,  gzone_new, curvaturearray,

gavg, velocity, Total_time, time_step, tecplotflag, alloys,
ct_ligelel,ct_ligetel new, ct_ligele2, ct_ligele2_new, Temperature,

points, delta,LigphaseBoolean, Tempboolean, noise_boolean,
Boundary_boolean, Matrix_boolean, fileint, radius, curvaturearray_old,
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Phase Evolution - Appendix C

counter = counter +1;

Total_time =Total_time + time_step; // Increment of Total Time
Temperature =Temperature -(float) 0.0; // New temperature value
tecplotflag =1;

headerflag = |;

// RECALCULATION OF TIME STEP,
/! For the first 1/3 of the C.V. it will use a small time step once it has
// reached this level it will start growing with a larger time step.

if{(gzone_new[(max_ij-1)/2)[(max_ij-1)/2]{max_k-40] != 0.0)&&(timeflag == 0)){
time_step = time_step*1; // Here we deciede to which level we wish

timeflag = 1; // to increase the time step.
} /1 End if

/I CALL OF SHIFT DOWN FUNCTION

Shift_down_function(gzone, gzone_new,ct_ligelel_new, ct_ligelel,ct_ligele2_new,
ct_ligele2,counter, max_ij, max_k);

// NOISE FUNCTION CALL
// This function is only called if the user has specified noise to be introduced into the system
if(noise_boolean == 1){
noise_function(gzone, max_ij, max_k); // the noise is added to gzone and not gzone new because

// immediately after the phase evolution is calculated
}// ENd if of noise function call

} while((gzone[(max_ij-1)/2)[(max_ij-1)/2)[max_k-5]==0)||(gzone{2}{(max_ij-1)/2}{(max_k-1)/2]==0)|/(gzone[(max _ij-1)/2}{2}{(max_k-1)/2]==0));//
End of while loop;

/1 So that the last file is tecplot compatible we set the tecplot flag =1;
tecplotflag =1;

for(i=0; i <= max_ij; i++)
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for(j=0; j <= max_ij; j+1)
for(k = 0; k <= max_k; k++) {

tecplotflag, alloys,
ct_ligelel, ct_ligelel_new, ct_ligele2, ct_ligele2_new, Temperature,
points, delta, LigphaseBoolean, Tempboolean, noise_boolean,
Boundary_boolean, Matrix_boolean, fileint, radius, curvaturearray_old,
velocityflag);

tecplotflag =0;
} // End of For
if{Matrix_boolean == 2){
Matrix_savefunction( counter, i, j, k, max_ij, max_k, gzone,  gzone_new, curvaturearray, gavg, velocity,
tecplotflag, alloys,

ct_ligelel, ct_ligelel_new, ct_ligele2, ct_liqele2_new, Temperature);
} // End if of matrix boolean

return 0;

} // END OF MAIN

//““##‘#““““0.““.‘.*“ VELOCITY FUNCTION 0‘#“““"‘#00#0!#““‘..."!.l.‘.‘.“‘.!““.'//

void velocity function(alloy alloys, int max_ij,int max_k, float const Temperature,
double curvaturcarray[MAX_SIZE][MAX_SIZE}[MAX_SIZE],
double velocity(MAX_SIZE}[MAX_SIZE}{MAX_SIZE],
double ct_ligelel[MAX_SIZE}{[MAX_SIZE)[MAX_SIZE},
double ct_liqele2[MAX_SIZE}{MAX_SIZE]{MAX_SIZE],

filesave_function( counter, i, j, k, max_ij, max_k, gzone, gzone_new, curvaturearray, gavg, velocity, Total_time, time_step,

Total_time, time_step,

int velocityflag, int counter, int headerflag,
double gzonefMAX_SIZE][MAX_SIZE][MAX_SIZE]){

// This function calculates the velocity at every cell that is located at the phase boundary
// The velocity if the phase field = 1.0 or 0 is zero.
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Phase Evolution — Appendix C

vel << “"Supercooling_E2";
vel.width(20);

vel <<"Curvat,AE_Incl";
vel.width(20);

vel <<"T.M_Host";
vel.width(20);

vel << "Temperaturc";
vel.width(20);

vel <<"Thermal_Superc";
vel.width(20);

vel <<"VELOCITY";

vel <<"\n";

headerflag = 1; // This is done so it only prints in the file once.
1! End if of Header Flag

}/ End if Velocity Flag == 2

for(i=0; i<=max_ij; i++)
for(j=0; j<=max_ij; j++)

for(k=0; k<=max_k; k++){

velocity(i)(j](k] =(float) alloys.kinetic_coefficient*(alloys.Temp_melt_host
+et_ligelel{ij{j}{k]*alloys.mlelet // removed the division by 100 because it is all in %wt
+ct_liqele2[i]{j](k}*alloys.mlele2 // same here100
-curvaturearray[i][j][k] - Temperature);
// The curvature array already includes the Gibbs Thomson Coefficient

// In order to determine the effects of each supercooling effect in the kinetic equation
// For every time step I wil be outputing a files with all the information of the velocity
// equation. The file name is Velocity.txt

if(velocityflag == 2){
if((i == 38)&&(j== 38)){
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Phase Evolution — Appendix C
neighbour flag = I;

/I Upper surface;

iftgzone[i][j}{ku]== 1) {
neighbour_flag = 1;
}

// Lower surface;

if{gzone{i}[j] (ki) == 1) {
neighbour flag = 1;
}

return neighbour_flag;
} // End of Neigbour Function

”“‘“‘"‘l“““t“t“““‘. ENDOFNEIGHBOUR FUNCTION “‘t####‘##“t#‘#‘.‘“0#““#‘#‘#"#‘ttt.“"“.//
”“#0‘““‘..‘O‘.“"“‘##“‘ BOUNDARY COND[TION FLINCTION “““'#‘##““‘O..“'!"0!"QO““"“..“‘.‘.‘”

void Boundary_Condition(int i, int j, int k, int index{6], int max_ij, int max_k,int Boundary_boolean){

// Mirror Boundary Condition

// This function should reflect the same condition as the one found in Curvature 3
// July 20 th 1998

index[0] = i-1;
index[1]=j-1;
index{2] = k-1;
index{3] = itl;
index{4] =j+1;
index(5] =k+1;

// Definition of Pcriodical Boundary Conditions
if{Boundary_boolean == 1){

162



£ol

‘[e101, ajqnop

ny

nf

08

ERNE

S101084 WM // 671871 ‘L7197 ‘ST YT €TTT 16NN ‘LN'9N ‘SN ‘PN 'EN‘TN “IN'6W ‘S LN ‘9N ‘SN ‘PIN'EIN'TIN 1IN 8o

}(ueajooq Arepunog yui ‘[9)xapur jui
A xew ju - xew wir'(4ziS X VWI(EZIS X VINIFGZIS X VINI3ae teoy ‘371 XVIWIGZIS XVI)IFZIS X VIA]ouoz8 aignop)aseydadesany pioa

Mlessssessnssosasasassasusasssrassrssnnsensssssass NOLLONNI ASVHd ADVUIAY SEAERRERREERRRNRAERRennnneny//

\\._:..i::::::.:::::::::: NOILLONNS NOLLIANOD AYVANNOH JO ANTssssssessssssosssssassnsasssl/

uonipuod” Arepunog uonaunj jo pug /7 {

MUl LON LN4 r'I NI TvOldonad =0  J pug //{

{'T-Y xew = [S]xapur) (o xew<|+y)p
{10 = [p]xapur}(fi xew< | +0y1
{'0 = [€lxapur} (i xew<[+1)p1
{:T) xew =[g]xoput } (0> (-1
{01 xew =[1]xapur } (0>1-Nn
{*0 " xew =[o]xoput } (0> -
}(0 ==uea{ooq Arepunog)j!
X LON Inq [ pue | uj jea1ponsad 10j uonuyaq //

[ealpoisad = | Uesjooq Arepunog 10j j1 pug // {
{*0 = [s]xapur}(y xew<j+y)!
{*0 = [p]xapur}(fi”xew<| +Oy
{0 = [g]xaput}(fi xew< | +1)y1
{™ xew =[g]xoput } (0>1-¥)n
{*0 xew =[]xopur } (0>(-Nyt
{* xew =[g]xaput } (0>1-pt

O xipuaddy - uoynjoaz aseyd



Phase Evolution - Appendix C

double cell;
/! Definition of Weight Factors

Mi=(float) 0.1; / Middle Layer
M2=(float) 0.20; // Middle Layer
M3=(float} 0.1; // Middle Layer
M4=(float) 0.20, // Middle Layer
MS=(float) 1.0; // Middle Layer
Mé6=(float) 0.20; // Middle Layer
M7=(float) 0.1; // Middle Layer
M8=(float) 0.20; // Middle Layer
M9=(float) 0.1; // Middle Layer
Ul=(float) 0.05; //Upper Layer
U2=(float) 0.1; // Upper Layer
U3=(float) 0.05; // Upper Layer
U4=(float) 0.1; /f Upper Layer
U5=(float) 0.20; // Upper Layer
U6=(float) 0.1; // Upper Layer
U7=(float) 0.05; / Upper layer
U8=(float) 0.1; /! Upper Layer
U9=(float) 0.05; // Upper Layer
L1=(float) 0.05;

L2=(float) 0.1; // Lower Layer
L3=(float) 0.05, // Lower Layer
L4=(float) 0.1; // lower Layer
L5=(float) 0.20, /I Lower Layer
Lé6=(float) 0.1, /! Lower Layer
L7=(float) 0.05; // Lower Layer
L8=(float) 0.1; // Lower Layer
L9=(float) 0.05; /! Lower Layer

Total = MI+M2+M3+M4+M5+M6+M7+M8+M9+  U1+U2+ U3+U4+ US+ U6+ U7+U8+U9+L1+L2+L3+L4+LS+L6+L7+L8+L9;

for(i=0; i <= max_ij; i++)
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Phase Evolution - Appendix C

gavg[il{i](k] = cell/Total;
} // Enf of For loop

} // End of function Averagephase
//“““‘t“‘t.‘.l“‘t‘t‘.““ END OF AVERAGE PHASE FUNCT[ON ‘t‘.“.!.“‘#““"0"‘.#“‘4"##““.‘0#““‘.#//

//“‘.‘."‘“t“"“‘.‘l.““#"‘“.“.‘l CURVATURE FUNCTION ““t“‘.“““*‘“t#t‘!“““#“““‘“ttt““t”

void curvature_function (double gzone[MAX_SIZE)[MAX_SIZE]{MAX_SIZE], float gavg[MAX_SIZE}[MAX_SIZE}[MAX_SIZE},
double curvaturearray[MAX_SIZE]{MAX_SIZE}[MAX_SIZE]}, int index{6], int max_ij, int max_k, int points,
float delta, float radius, alloy alloys,int Boundary_boolean, float
curvaturearray_old[MAX_SIZE][MAX_SIZE][MAX_SIZE])

{

// Definition of Local Variables in the Curvature Function

inti;

int j; // Indices

intk;

int const min=0;

int flagtotal;

int il, iu; Nit=i-1,j1 =j-1, and kl = k-1 while iu = i+, ju = j+1 and ku= k+1

int jl, ju;

int ki, ku, passed, failed; // Passed fail represent the number of nodes that have a phase field and
/f the curvature is between 30%

int passed50, passed60;

int space;

int Total_points;

// Definition of Float variables in the Curvature Function

double gx; // partial derivative of the gzone wrt to x
double gy; // partial derivative of the gzone wrtto y
double gz, // partial derivative of the gzone wrt to z
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Phase Evolution — Appendix C

out << "# "
out.width(20);
out << alloys.kdistr;
out.width(33);
out << "Distribuition Coeficient” << "\n";

out <<m\nu;

// FROM THIS SECTION WE START PRINTING THE DATA THAT WILL BE READ BY TECPLOT
// ALL THE INFORMATION PREVIOUS TO THIS WHERE JUST COMMENTS AND MATERIAL PROPERTIES
// THAT ARE ONLY READ IF WE ARE RECOVERING FROM A FAILED OR A STOPPED RUN.

out <<"ji";

out.width(10);

out << "j”;

out.width(10);

out << ukn;

out.width(18);

out <<"GZONE";

out.width(18);

out << "GAVG",;

out.width(18);

out << "NEW GZONE";

out.width(18),

out <<"CURV-GIBB"; // Thus the old phase field remains and it does not evolve

out.width(18);
out << "CURVATURE";
out.width(18);

out <<"VELOCITY";

out.width(18);

out << "Conct Si";
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Phase Evolution — Appendix C

double gzone_new[MAX_SIZE)[MAX_SIZE}[MAX_SIZE],double curvaturcarray| MAX_SIZE](MAX_SIZE][MAX_SIZE),
float gavg[MAX_SIZEJ[MAX_SIZE][MAX_SIZE], double velocity{MAX_SIZE]{MAX_SIZE][MAX_SIZE], float
Total time,
float time_step, int tecplotflag, int counter, float delta, int fileint, int index[6], int Boundary_boolean,
double ct_ligelel_new[MAX_SIZE][MAX_SIZE][MAX_SIZE], double ct_ligelel[MAX_SIZE)[MAX_SIZE][MAX_SIZE},
double ct_tigele2_new{MAX_SIZE][MAX_SIZE][MAX_SIZE], double ct_liqele2(MAX_SIZE}[MAX_SIZE][MAX_SIZE]},
alloy alloys, float Temperature){

{/ Intialization of variables

int 1, j, k;

int crystallize_flag;

float time;

double ct_ligelel_mgap, ct_ligele2_mgap, ct_solelel, Miscibility_gap, phi, nd_slope, nd_conct_1, nd_conct_2;
double nd Kk, ct_solele2, max_diff_gzone_num, max_diff_gzonc_dinom, max_diff_gzone;

if{fileint == 0){
cin >> fileint;
}

// Evolution of the phase ficld
for(i=0; i<=max_ij; i++)
for(j=0; j<=max_ij; j++)
for(k=0; k<=max_k; k++){

/* "Crystallization can take place in cells with 0< gzone <1 or in cells with gzone = Q
having at least one completely crystallized neighbour cell. " From Prof. A. Artemev article.*/

crystallize_flag = neigbour_function(gzone, i, j, k, index, max_ij, max_k, Boundary_boolean);

time = time_step; // Here we assign a local variable the time step calculated by the stability
// criteria.

182



€8l

{(ded”Anquasin, 1 agajur skoj e)/]{f][1)Aeueainieans = ¥ pu

3INJEAIND [RUOISUIWIP UOU JO UOHEINI[E)) //

de8~ Aupiqrasty [(A1(0(11zarebin ™10 = Z710u03 pu
"0M} UOLIBIIUIIUOI [BUOISUIWIP UOU JO uone|naje)) //
deg” Aupiquastya) [t 1919by 710 = | T1ou09pu
U0 UONBIUIIUOD [RUOISUSWLP UOU JO UONR|NIRY) //
‘1913jwr's£ojje szapopwsKojje = adojs pu

adojs [euoisuawip uou jo uonejndje) //

‘(19p9qurskoyre, ded Aujiqrosiin)/(1soy 1w dwa ‘skojfe - smesadwa ) = wyd
'1yd Jo uonenofe)y/

$1919]05 ™10 - dedw " jajabi 10 = deS " Aujiquosiy
((1apaswr'shojje)/(1soy yaw dwa skojje - aimjesadwiaf )) = [9j2j0s 1
‘((za1dqwrshoyje)/(1soy yjaw ™ dwa ‘skojje - amesadwia] )) = deSwizajabyy 10
‘((1a10qur'shoye)/(1soy 3jowdwa | 'skojje - aimesadwa ) )) = deSwi™jopaby 10
‘de3 Aujiqiosiyl jo uone|noe)y/
‘pamojje a3ueypd pia1j aseyd wnwixep Jo uoneNd[Ly) //

Y0 1>[4)11H{1]Jauoz8)p9(0°0 <[N][N[1]ouoz3))||((|==8ey szijje1sK10)99(0"0== [N}[1]}ou0z3))) ;1

D xipuaddy — uoin|oA7 aseyd



Phase Evolution - Appendix C

{/ Calculation of the solid concentration of element 2 based on the linear
// system of the phase diagram

ct_solele2 = ((Temperature - alloys.Temp_melt_host)/(alloys.msele2));

// Calculation of Maximum Change in phase field allowed

max_diff_gzone_num = (phi - nd_conct_! - nd_slope*nd_conct_2 - nd_k)*(0.5);

max_diff_gzone_dinom = (phi - nd_conct_! - nd_slope*nd_conct_2 - nd k) +
(nd_conct_1*(1-(ct_solelel/ct_ligelel mgap))) +
(nd_slope*nd_conct_2*(1-(ct_solele2/ct_ligele2_mgap)));

max_diff_gzone = max_diff_gzone_num / max_diff_gzone dinom,;

// Calculation of the change in phase field

gzone_new(il{jl(k] = gzone[i}{i}{k] + (time*velocity{i][j}{k}/delta);

// Checking that the change in phase field is not greater than the thermodynamically
// allowed.

if{fabs((gzone_new[i}(j}{k] - gzone{i][j]ik})) > fabs(max_diff_gzone)){

gzone_new(i][j](k] = gzone[i](j]l{k] + max_diff _gzone;

}// End if of Change in phase field being greater than max_diff gzone

// Here we need to check that we have not gone over the aceptable phase field value

iftgzone_new(i][jl{k] >=1.0){ // Then the new value of phase field for that cell has become to great
gzone_new[i](j][k] = 1.0;
Y/ end if
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Phase Evolution — Appendix C

/1 Excess solute redistribution of Element 1 (Silicon);

/I Middle Neighbours Elelement |

ct_ligelel_new[i){ju](k] = ct_ligele] _new[i]{ju)(k] +(1-gzone[i)[ju][k])*Excess_elel/(liq_perct),
ct_ligelel_newf[il]{jl{k] = ct_liqelel_newl[il][jl[k] +(1-gzone[il)[j}[k])*Excess_elel/(liq_perct);
ct_ligelel_new[i]jl[k] = ct_liqelel_new[i]{jl(k] +(1-gzone[i](j][k])*Excess_ele1/(liq_perct);
ct_ligelel_new(iu]{j){k] = ct_liqelel_new(iu][j}[k} +(i-gzone[iu][j}[(k])*Excess_ele1/(liq_perct);
ct_ligelel_new(i][jt}{k] = ct_ligelel_newf[i]j1}{k] +(1-gzone[i]{ijl}(k])*Excess_ele1/(liq_perct);

{/ Upper Neighbours Element 1
ct_ligelel _new(i](j]{ku] = ct_liqelel_new(il(jl(ku] +(t-gzone[i]{jl[ku})*Excess_elel/(liq_perct);

// Lower Neighbours  Element |
ct_ligelel_new(i][jl{kl] =ct_liqelel_new(i](jl(kl] +(1-gzone[il{j}[kt])*Excess_elel/(liq_perct);

1/ Excess solute redistribution of Element 2 (Copper);

// Middle Neighbours Elelement 2

ct_ligele2_new(i](jul(k] = ct_liqele2_new[i}{ju]{k] +(1-gzone[i]{ju){k])*Excess_ele2/(liq_perct),
ct_ligele2_new[il][jl(k] = ct_liqele2_new[ill[j](k] +(I1-gzone[il]}](k])*Excess_ele2/(liq_perct);
ct_liqele2_new(i][j}{k] =ct_liqele2_newfi](jl(k] +(1-gzone[i}[jl[k])*Excess_ele2/(liq_perct);
ct_ligele2_new[iu][j][k] = ct_liqele2_new[iu]{jl{k] +(1-gzone[iu](ji[k])*Excess_ele2/(liq_perct);
ct_ligele2_newl[i}[jl][k] = ct_ligele2_new{i]{jl][k} +(1-gzone[i][jl]{k])*Excess_ele2/(liq_perct);

// Upper Neighbours Element |
ct_ligele2_new[i}{j)iku) = ct_ligele2 new[i][jl{ku] +(1-gzone[i)[jJ[ku])*Excess_ele2/(lig_perct);
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Phase Evolution — Appendix C

if ( TempD_liq <.1){
cout << " The temp. Diff calc (K) of the atlowed liquidus temp: " << TempD_liq << "\n";
cout << " Liquidus Temperature calculated: " << Temp_allowed_liquid << "\n",
cout << " Temperature provided by you: " << Temperature << "\n";
cout << " You will be required to input a lower temperature value"<< "\n";
TempD liq=0;
cout << " Press any number to continue: " << "\n";
cin >> stop;

}// End if

Temp_allowed_solid = alloys.Temp_melt_host + alloys.mselel *ct_ligele1[0]{0}(0] + alloys.msele2*ct_liqele2(0]{0](0];
TempD_sol =Temperature-Temp_allowed_solid;

if (TempD_sol < 0.1){
cout << " The temp. Diff (K) of the allowed solid temp: " << TempD _sol<< "\n";
cout << " Solidus Temperature calculated: " << Temp_allowed_solid << "\n";
cout << " Liquidus Temperature calculated: " << Temp_allowed_liquid << "\n";
cout << " Temperature provided by you: " << Temperature << "\n";
cout << " You will be required to input a lowe temperature value";
TempD_sol = 0;
cout << " Press any number to continue: " <<"\n";
cin >> stop;

}/I End if

ifi(TempD _liq >=0.1)&&(TempD_sol >= 0.1)){

Temp=1;
} // End if
else{

Temp = 0;
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Phase Evolution — Appendix C

} // End of else
retumn Temp;

} // End of Temperature range function

”“““““‘.‘0“‘0‘#0O#““‘ END OF TEMPERATURE RANGE FUNCTION FEARERRRABBRAEEAR SRR RRRRARRBA RIS RNIRD NS00 %S/

//l“‘.‘0‘.0“"“‘#‘.““0‘0‘ MATR]X SAVE FUNCTION ““““‘l“".“““‘t‘.‘0“‘t#‘t.‘.““.“t‘..ﬂ

void Matrix_savefunction(int counter, int i, int j, int k, int max_ij, int max_k, double gzone[MAX_SIZE)[MAX_SIZE)[MAX_SIZE},
double gzone_new[MAX_SIZEJ[MAX_SIZE]J[MAX_SIZE), double curvaturearrayfMAX_SIZE]J[MAX_SIZE][MAX_SIZE]},
float gavg[MAX_SIZE]IMAX_SIZE)[MAX_SIZE), double velocity[MAX_SIZE][MAX_SIZE]{[MAX_SIZE],
float Total_time, float time_step, int tecplotflag, alloy alloys,
double ct_ligelel[MAX_SIZE][MAX_SIZE][MAX_SIZE},
double ct_ligelel_new[MAX_SIZE){(MAX_SIZE]|[MAX_SIZE],
double ct_ligele2[MAX_SIZE]{MAX_SIZE][MAX_SIZE},
double ct_ligele2_new[MAX_SIZE]J[MAX_SIZE][MAX_SIZE],float Temperature){

// Variable Declaration for Filesave_function
char fileName[40];
char *taseFileName="Matrix"; / Base File Name

char stop;
int n; // Counter

// Editing of file name command.

sprintf (fileName, "%s%d.txt", baseFileName, counter);
// Opening of file name

ofstream out;

out.open(fileName, ios::app);

if(fileName){
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Phase Evolution — Appendix C

for(i=0; i<=max_ij; i++)
for(j=0; j<=max_ij; j++)
for(k=1; k<=max_k; k++){
totalmass] = totalmassl+ gzone new]i}[j)[k]*alloys.kdistr*ct_liqelel_new(i][j][k] +
(1-gzone_new(i][jlik])*ct_ligelel_new[i){j)[K];

totalmass2 = totalmass2 + gzone_new[i]{j](k)*alloys.kdistr*ct_ligele2_new{i}{j}{k] +
(1-gzone_new(i][jl[k])*ct_liqele2_new(i](j}(k];

}// End for
// OPENING FOR OUTPUT OF PROPERTY FILES
/! Opening of file name
ofstream mass;

mass.open("mass.txt", ios::app),

if{!"mass.txt"){
cout<< "Can not open file \n";
// Handle error
cin >> stop;
exit (0);

mass << "Phase Evolution Conservation of Mass test Iteration No. "<< counter << ™n";
mass << " Total mass of element | (Silicon): " << totalmass! << "\n",

mass << " Total mass of element 2 (Copper) : " << totalmass2 << "\n";

mass << "\n";

}// End of conservation of mass function

”t"U“"‘l“l“““.“““‘U CO}JSBRVATION OF MASS FUNCTION #8882 8345343300524 44052000 6 500 S 04RS00 000000008 //
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